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UNIT I 

RELATIONS 

1.1 INTRODUCTION TO RELATION 

 In Mathematics, the expressions such as „is less than‟, „is parallel to‟, „is 

perpendicular to‟ are relations.  

Relations may exist between objects of the same set or between objects of 

two or more sets. 

1.2BINARY RELATION 

 Let A and B be two non-empty sets. 

Then any subset of R of the Cartesian product AxB is called a binary 

relation R from A to B. 

 If  𝑎, 𝑏 𝜖𝑅, then a is related to b and is written as aRb. 

 The set  𝑎 ∈ 𝐴:  𝑎, 𝑏 𝜖𝑅 for some bϵB  is called the domain of R and is 

denoted by 𝐷𝑅 𝑅 .  

 The set  𝑏 ∈ 𝐵:  𝑎, 𝑏 𝜖𝑅 for some aϵA  is called the range of R and is 

denoted by 𝑅𝑅 𝑅 .  

Example 1.1  

i. Let 𝐴 =  3,6,9 , 𝐵 =  4,8,12 .  

Then 𝑅 =   3,4 ,  3,8 ,  3,12   is a relation from A to B 

ii. Let 𝐴 =  2,3,4 , 𝐵 =  𝑎, 𝑏 .  

Then AxB=   2, 𝑎 ,  2, 𝑏 ,  3, 𝑎 ,  3, 𝑏 ,  4, 𝑎 ,  4, 𝑏   

If R =  2, 𝑎 ,  3, 𝑏  , then R C A xB and  

R is a relation from A to B. 

iii. Let 𝐴 =  2,3,4 , 𝑎𝑛𝑑 𝐵 =  3,4,5,6,7 .  
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If R is a relation from A to B defined by  

(a,b)𝜖 R such that a divides b (with zero remainder) then, 

𝑅=  2,4 ,  2,6 ,  3,3 ,  3,6 ,  4,4   

Example 1.2: 

Let𝐴 =   1,2,3,4  and 𝐵 =   3,4,5,6  

Find the elements of each relation R stated below. Also, find the domain and range 

of R. 

i. aRb if and only if a<b 

ii. aRb if and only if a  and b are both odd numbers. 

Solution: 

i. 𝑅 =    1,3 ,  1,4 ,  1,5 ,  1,6 ,  2,3 ,  2,4 ,  2,5 ,  2,6 ,  3,4 ,  3,5 ,  3,6 ,  4,5 ,  4,6   

𝐷𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑅 = 𝐷𝑅(𝑅) =  1,2,3,4  𝑎𝑛𝑑 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑅 =  𝑅𝑅(𝑅) =  3,4,5,6  

ii.  𝑅 =    1,3 ,  1,5 ,  3,3 ,  3,5  𝑅𝑅(𝑅) =  1,3  𝑎𝑛𝑑𝑅𝑅(𝑅) =  3,5  

Example 1.3: 

Let A = {1,2,9} and B={1,3,7} 

Find the elements of each relation R stated below. Also, find the domain and range 

of R if 

(i) relation R is 'equal to' then  

(ii) relation R is 'less than'  

(iii) relation R is 'greater than'  

 

Solution: 

(i) R={(1,1),(3,3)} 

Dom(R) = {1,3} 

Ran(R) = {1,3}  



 

4 
 

(ii) R={(1,3),(1,7),(2,3),(2,7)} 

Dom(R) = {1,2} 

Ran(R) = {3,7} 

(iii) R={(2,1),(9,1),(9,3),(9,7)} 

Dom(R) = {2,9} 

Ran(R) = {1,3,7} 

 

Example 1.4: 

Find the number of distinct reactions from a set A to Set B 

Solution: 

 Let the number of elements in A and Bbe m and n respectively. 

A x B has mn elements. 

∴  Power set of A x B has 2
mn

 elements.  

(i.e.,) A x B has 2
mn

distinct Subsets. 

Every subset of A x B is a relation from A to B. 

Thus the number of distinct relations from A to B is 2
mn

. 

 

Note: 

Let R be a relation defined on a set A consisting of n elements. 

A x A contains  2
n2

 elements. 

∴ There exists 2
n2 

binary relations on a set A. 

 

1.3 CLASSIFICATION OF RELATIONS 

 In several applications of computer science and applied mathematics, we 

generally treat relations on a set A rather than relations from A to B. Furthermore, 

these relations often satisfy certain properties. The various types of relations are 

explained in this section. 
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Reflexive Relation 

 The relation Rdefined on a Set A is said to be reflexive if aRa (or (a,a) 𝜖R) 

for all a𝜖A. 

Example: 

i. Let R be a relation on 𝐴 =  1,2,3,4  

Then the relation R =   1,1 ,  2,2 ,  3,3 ,  4,4   is reflexive. 

ii. Let A= 𝑎, 𝑏, 𝑐  and 𝑅 =   𝑎, 𝑎 ,  𝑏, 𝑏 ,  𝑐, 𝑐   

Then R is a reflexive relation on A.  

 

Symmetric Relation: 

 A relation R defined on a set A is said to be symmetric ifaRb ⇒ bRa for all 

a, b 𝜖𝐴. 

 i.e., R is symmetric onA if(a,b) 𝜖𝑅 ⇒ (𝑏, 𝑎)𝜖𝑅. 

Example: 

(i) Let A={1,2,3} and R={(2,2),(2,3),(3,2)}. 

Then R is symmetric, since both(2,3) 𝜖 R and (3,2) 𝜖 R. 

(ii) Let R be a relation defined by „is perpendicular to‟ on the set of all 

straight lines. 

If line a is perpendicular to b, then b is perpendicular to a. 

Then R is a symmetric relation.  

Antisymmetric Relation 

A relation R defined on a set A is said to be antisymmetricif(a,b) ∈R and 

a≠b,then (b,a) ∉R for all a,b, ∈A 

Example: 

Let R be  a relation defined on A={1,2,3} by (a,b)∈R if a ≤b,  for  a,b∈A. 

 Then R = {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}.  
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Here, (1,2) ∈ R, but (2,1) ∉ R.  

∴The relation R is antisymmetric. 

Transitive Relation 

A relation R defined on a set A is said to be transitive, if  

(a,b) ∈R and (b,c) ∈ R ⇒(a,c)∈ R for  all a,b,c∈ A 

i.e., aRb and bRc ⇒aRc for all a,b,c∈A. 

Example: 

i. Let 𝐴 =  1,2,3  and 𝑅 =   1,1 ,  2,2 ,  2,3 ,  3,2 ,  3,3  .  

Then R is transitive, since 2R2 and 2𝑅3 ⇒  2𝑅3  

also, 2R3and 3R2 ⇒ 2𝑅2. 

ii. Let R be a relation on A= 𝑎, 𝑏, 𝑐, 𝑑 given by 

𝑅 =   𝑎, 𝑎 ,  𝑏, 𝑐 ,  𝑐, 𝑏 ,  𝑑, 𝑑   

Here (b,c) 𝜖𝑅and (c,b) 𝜖𝑅but (b,b) ∉ R.  

So, the relation R is not transitive. 

iii. Let A denote the set of straight lines in a plane and R be a relation onA 

defined by “is parallel to”. 

Let a, b, c be three lines. If a is parallel to b and b is parallel to c, then ais 

parallel to c. Hence R is a transitive relation on A. 

Equivalence Relation 

A relation R on a set A is said to be an equivalence relation, if  R is 

reflexive, symmetric and transitive. 

Example: 

Let R be a relation defined on A= 𝑎, 𝑏, 𝑐 by 

𝑅 =   𝑎, 𝑎 ,  𝑎, 𝑏 ,  𝑏, 𝑎 ,  𝑏, 𝑏  𝑏, 𝑐 ,  𝑎, 𝑐 ,  𝑐, 𝑎 ,  𝑐, 𝑏 , (𝑐, 𝑐)  

Then R is an equivalence relation. 
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Associative Relation 

Relations from A to B are subsets of A x B. Two relations from A to B can 

also be associated in the same way as two sets can be associated. 

Let A =  𝑎, 𝑏, 𝑐   and B =  𝑎, 𝑏, 𝑐, 𝑑  

Let R1 = {(a,a),(b,b),(c,c)} and R2 = {(a,a),(a,b),(a,c),(a,d)} 

The associative relations of A and B are 

RU = R1 U R2 = {(a,a),(b,b),(c,c),(a,b),(a,c),(a,d)} 

R∩ = R1∩ R2 = {(a,a)} 

R12 = R1- R2 = {(b,b),(c,c)} 

R21 = R2- R1 = {(a,b),(a,c),(a,d)} 

 

Example 1.5: 

Let A=  1,2,3  .  Check whether the following relations are reflexive, symmetric, 

anti symmetric or transitive. 

i. R=   1,1 ,  2,2 ,  3,3 ,  1,3 ,  1,2   

ii. R=   1,1 ,  2,2 ,  1,3 ,  3,1   

iii. R=   1,1 ,  2,2 ,  3,3 ,  1,2 ,  2,1 ,  2,3 ,  3,2   

Solution: 

i. The given relation R is reflexive and transitive. 

R is not symmetric Since  (1,3) 𝜖 R but  (3,1) ∉ Rand  

(1,2) 𝜖 𝑅 but  (2,1) ∉ 𝑅 

ii. The relation R is symmetric. 

R is not reflexive, since (3,3) ∉ 𝑅. 

R is not transitive since (3,1) 𝜖 R and (1,3) 𝜖 R but (3,3) ∉ 𝑅.  

iii. The given relation R is reflexive and symmetric. 

R is not transitive since (1,2) 𝜖 R and (2,3) 𝜖 R but (1,3) ∉ 𝑅. 
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Example 1.6: 

Let Z
*
 be the set of all non-zero integers and R be the relation on Z

*
such that 

(a,b)ЄR if a is the factor of b  i.e., a/b. Investigate R for reflexive, symmetric,  anti 

symmetric or transitive. 

Solution: 

(i)
 𝑎

𝑎
∀𝑎 ∈ Z ∗ 

∴ R is reflexive. 

(ii)  a/b does not imply b/a 

∴ R is not symmetric. 

(iii) If 4/4 and -4/4 are true then 4≠-4 

∴ R is not anti symmetric. 

(iv) If a/b and b/c then a/c. 

∴ R is transitive. 

 

Example 1.7: 

Let Z denote the set of integers and the relation R in Z be defined by aRbiff 

a-b is an even integer.Then show that R is an equivalence relation. 

Solution: 

(i) a-a=0 which is an even integer 

aRa∀𝑎 ∈ 𝑧 

 ∴ R is reflexive. 
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(ii) Let aRb 

⇒  a - b is a even integer 

⇒  −(a-b) is an even integer 

⇒  𝑏 −a is an even integer 

∴bRa 

i.e,, aRb⇒ 𝑏𝑅𝑎 

∴ R is symmetric. 

(iii) Let aRb and bRc 

aRb⇒a-b is an even integer 

bRc⇒b-c is an even integer. 

a-c = (a-b)+(b-c) 

∴(a-c) is an even integer. 

i.e aRc 

aRb and bRc⇒aRc 

∴R is transitive 

R is reflexive symmetric and transitive. 

Thus R is an equivalence relation. 

 

Example 1.8: 

Let A be the set of all triangles in the Euclidean plane and R is the relation on A 

definedby „a is similar to b‟. Then show that R is an equivalence relation on A. 

Solution: 

i. Every triangle is similar to itself. 
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i.e, the relation R is reflexive. 

ii. If a is similar to b then b is similar to a. 

i.eaRb⇒bRa 

∴ Ris Symmtric. 

iii. If a is similar to b and b is similar to c, then a is similar to c. 

∴ R is transitive. 

R is reflexive, symmetric and transitive. 

∴ R is an equivalence reaction 

 

1.4 COMPOSITION OF RELATION 

Let R1 be a relation from A to B and R2 be a relation from B to C. 

The composition of R1 and R2 denoted by R2o R1 is the relation from A to C 

defined as 

R2o R1=  𝑎, 𝑐 :  𝑎, 𝑏 𝜖 𝑅1𝑎𝑛𝑑  𝑏, 𝑐 𝜖R2for some b𝜖B  

Example 1.9: 

 Find the composition of the Relations. 

R1=  1,2 ,  1,6 ,  2,4 ,  3,4 ,  3,6 ,  3,8   and   

R2 =  2, 𝑥 ,  4, 𝑦 ,  4, 𝑧 ,  6, 𝑧 ,  8, 𝑥   

Solution: 

 R2o R1=  1, 𝑥 ,  1, 𝑧 ,  2, 𝑦 ,  2, 𝑧 ,  3, 𝑦 ,  3, 𝑧 , (3, 𝑥)  

 

1.5 INVERSE OF RELATION 

 Let R be a relation from A to B. The inverse of R is denoted by R
-1

, and it is 

a relation from B to A defined by 

R
-1

=   𝑏, 𝑎 :  𝑎, 𝑏 𝜖𝑅  
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Example 1.10: 

 Let A=  2,3,4 , B=  3,4,5,6,7 , and  

 R=   2,5 ,  2,6 ,  3,3 ,  3,7 ,  4,4  . Find the inverse of R. 

Solution: 

The inverse of the relation R is 

𝑅−1 =   5,2 ,  6,2 ,  3,3 ,  7,3 ,  4,4   

Example 1.11: 

If a relation R is transitive, then prove that its inverse relation R
-1

 is also 

transitive. 

Solution: 

 Let (a,b) 𝜖R and (b,c) 𝜖R
-1

. 

⇒ (b,a) 𝜖R and (c,b) 𝜖R  

⇒ (c,b) 𝜖R and (b,a) 𝜖R    

⇒ (c,a) 𝜖R [Since R is transitive] 

⇒ (a,c) 𝜖R
-1 

∴ R
-1

 is transitive. 

 

1.6 REPRESENTATION OF RELATIONS ON A SET 

 A relation on a set A is a relation from A to A. i.e., a relation on a set A can 

be treated as a subset of A x A. 

Example 1.12: 

Let A = {1,2,3,4}. Let R = {(a,b)  : a divides b}. Find the ordered pairs 

which exists in R. 

Solution: 

R = {(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)} 
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1.7 CLOSURE OPERATIONS ON RELATIONS 

Let R be relation on a set A. The relation R may or may not possess the 

relational properties such as reflexivity, symmetry, and transitivity. If R does not 

possess any property, to fulfill R with a property, we should add new pairs to R. 

The smallest relation R1 on A which contains R and possesses the required 

property is called the closure of the relation R. 

1.17.1 Reflexive Closure 

Let R be a relation defined on a set A.  

Relation RR is called reflexive closure of R if RR is the smallest relation 

containing R, having the reflexive property. 

 i.e., RR = 𝑅 ∪ ∆𝐴 where ∆𝐴= {(a, a): a∈ A} is the diagonal or equality 

relation on A. 

 In other words, the reflexive closure of R can be obtained by adding to R 

all pairs of the form (a, a), a∈A, not already in R. 

Example 1.13: 

Find the reflexive closure of the relation R = {(1, 1), (1, 2), (2, 1), (3, 2)} on 

the set A = {1,2,3}. 

Solution: 

This relation is not reflexive.  

The relation can be made reflexive, by adding (2, 2) and (3, 3) to R.  

Hence the reflexive closure of R is {(1,1), (2,2), (3,3),(1,2), (2,1), (3,2)} 

 

Example 1.14: 

Find the reflexive closure of the relation R = {(a, a), (a, b), (b, c), (c, a)} on the 
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set A = {a,b,c}. 

Solution: 

The relation can be made reflexive, by adding (b, b) and (c, c) to R.  

Hence, the reflexive closure of R is 

RR = R U∆𝐴= {(a,  a) ,  (b, b), (c, c) ,  (a, b), (b ,c), (c, a)} 

 

1.17.2 Symmetric Closure 

Let R be a relation defined on a set A.  

The relation Rs is called the symmetric closure of R if RS is thesmallest 

relation containing R, having the symmetric property.  

The relation RS = RU R
-1

 is thesmallest symmetric relation containing 

Rand it is the symmetric closure of R. 

Inotherwords, the symmetric closure of R is obtained by adding all 

ordered pairs of the form (b, a), whenever (a, b), belongs to the relation, that 

are not already present in R. 

 

Example 1.15: 

Find the Symmetric Closure of the relation  

R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} 

Defined on the set A = {1,2,3}. 

Solution: 

The relation is not symmetric. 

 The relation will be a symmetric if we add (2,1) and (1,3) to R. 

Hence the symmetric closure of R is  

{(1,1), (2,1), (2,2), (2,3), (3,1), (1,3), (3,2)} 
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Example 1.16: 

Find the symmetric closure of the relation  

R = {(4, 5), (5, 5), (5, 6), (6, 7), (7, 4), (7, 7)} 

defined on the set A = {4,5,6,7}. 

Solution: 

The smallest relation containing R, having the symmetric property, is 

R∪ 𝑅−1={(4,5),(5,4),(5,5),(5,6),(6,5),(6,7),(7,6),(7,4),(4,7),(7,7)}  

 

1.7. MATRIX REPRESENTATION OF RELATION 

Let A = {𝑎1, 𝑎2, … … , 𝑎𝑚  and B =  𝑏1, 𝑏2 , … 𝑏𝑛 be two finite sets, containing 

m and n elements, respectively.  

Let R be a relation from A to B. 

Then, relation matrix of R, denoted by MR is an mxn matrix, i.e., 

  𝑀𝑅= 𝑚𝑖𝑗  𝑚  𝑋𝑛
 

 where 

  𝑚𝑖𝑗 =  
0,
1,

 
𝑖𝑓  𝑎𝑖 , 𝑏𝑗  ∉ 𝑅

𝑖𝑓 𝑎1, 𝑏𝑗  ∈ 𝑅
 

MR can be described both in the tabular and in the matrix form. 

Example 1.17: 

Let A= {1,2,3} and R={(1,2), (1,3), (2,3)}.Determine MR. 

Solution:      

 

 

 

 

 1 2 3 

1 0 1 1 

2 0 0 1 

3 0 0 0 
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MR= 
0 1 1
0 0 1
0 0 0

  

 

Example 1.18 : 
 
Let A = {1,2, 3}, B = {a, b), and R = {(1, a), (2, b), (3, a)}. Determine MR in 
tabular form and in matrix forms. 
 
Solution: 
 
 

 a b 

1 1 0 

2 0 1 

3 1 0 

 

MR= 
1    
0
1

0
1
0
  

 
 

Example 1.19: 

Let A = {1, 4, 5} and R = {(1, 4), (1, 5), (4, 1), (4, 4), (5, 5)}. Determine MR.  

Solution: 

Given that R = {(1, 4), (1, 5), (4, 1), (4, 4), (5, 5)}.  

Then the relation matrix of R, given by 

MR= 
0 1 1
1 1 0
0 0 1
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Example 1.20: 

Let A = {1, 2, 3,4}, B = {p, q, r,5}, and  

R = {(1, p), (1, q), (1, r), (2, q), (2, r), (2, i)}. Find MR. 

Solution: 

 

The matrix representation of relation R, i.e., MR is given by 

 

 p  q    r    s 

MR=

1
2
3
4

 

1   
0
0
0

1
1
0
0

    1    
1
0
0

0
1
0
0

  

 

Example 1.21 : 

A= {a,b,c} and 𝑀𝑅 =  
1 1 0
0 0 1
0 0 0

  

Find the relation R defined on A. 

Solution: 

𝑀𝑅  can be re-written as 

  ab  c 

 𝑀𝑅 =
𝑎
𝑏
𝑐

 
1 1 0
0 0 1
0 0 0

  

Thus, R= {(a,a), (a,b), (b,c)} 

1.8 DIGRAPHS 
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Let R be a relation defined on the set A = {a1, a2, …, an}. 

The element ai of A are represented by points or circles called nodes or 

vertices. 

If  𝑎𝑖 , 𝑎𝑗  𝜖𝑅, then we connect the vertices aiand aj by means of an arc 

and place an arrow in the direction from aito aj. 

If (ai,aj)𝜖R and (aj, ai)𝜖R, then we draw two arcs one between aitoajand 

the other between aj to ai. 

When all the nodes corresponding to the ordered pairs in R are connected 

by arcs with proper arrows, we get a graph of the relation R. 

This diagram or graph is called the directed graph, or digraph of the 

relation R. 

 If R is a relation on a set A, a path of lengthn in R from ai to aj is a finite 

sequence P, such as, 𝑎𝑖 , 𝑎1,   𝑎2,   … , 𝑎𝑛−1,  ,aj beginning with ai, and ending with 

aj such that 𝑎𝑖𝑅 𝑎1 , 𝑎1𝑅 𝑎2 , … , 𝑎𝑛−1𝑅 𝑎𝑗         

If n is a positive integer then the relation 𝑅𝑛  on the set A can be defined 

as that there is a path of length n from ai to aj in R i.e.,   𝑎𝑖 , 𝑎𝑗  ∈ 𝑅𝑛 . 

The relation𝑅∞ is defined on A or  𝑎𝑖 , 𝑎𝑗  ∈ 𝑅∞means, that there is some 

path in R from ai to aj. 

A path that begins and ends at the same vertex is called a cycle. 

A cycle in a digraph can be defined as a path of length n≥ 1 from a vertex 

to itself. 

The relation 𝑅∞  is sometimes called the connectivity relation for R. 

The R
n
(x) consists of all vertices that can be reached from x by means of a 

path in R of length n. 

The set 𝑅∞(x) consists of all vertices that can be reached from x by some 

path in R. 

If R is reflexive, then there must exists a loop at each node in the digraph 

of R. 

If R is symmetric, then (ai, aj)∈R implies (aj,ai) ∈R and the nodes ai and aj 

will be connected by two arcs (edges), i.e., one from ai to ajand the other from 

aj to ai . 
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Example  1.22: 

Draw the directed graph or digraph of the relation  

R = {(1, 2), (1,3), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)} 

on the set A = {1,2, 3, 4}. 

Solution: 

The digraph of R is 

 

 

Example 1.23: 

Let A = {a, b, d) and R ={(a, b), (a,d), (b, d), (d, a), (d, d)} be a relation on A. 

Draw the digraph of R. 

Solution: 

 

The digraph of R is shown in Figure  
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Example 1.24: 

Let A = {1,2, 3, 4} and R = {(1,1), (1, 2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1), 

(4,4)}.Construct the digraph of R. 

Solution: 

The digraph of Ris  
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Example 1.25: 

 Find the relation R from the digraph of the following figure. 

 

Solution : 

 The relation R for the digraph is R = {(a,a),(a,c),(b,c),(c,b),(c,c)(d,c)} 

 

Example 1.26: 

Let A = {1,2, 3,4,5} and R = {(1,1), (1,2), (2,3), (3,5), (3,4), (4,5)}.  

Determine (i) R
2
 (ii) 𝑅∞  

Solution: 

The digraph of R is  
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(i) Here, (1, l)∈ 𝑅 and(l, 1) ∈R⇒(1, 1 ) ∈R
2
Again, 

 1,1 𝜖𝑅 𝑎𝑛𝑑  1,2 𝜖𝑅 ⇒ (1,2)𝜖𝑅2 

 1,2 𝜖𝑅 𝑎𝑛𝑑 (2,3)𝜖𝑅 ⇒ (1,3)𝜖𝑅2 

 2,3 𝜖𝑅 𝑎𝑛𝑑 (3,5)𝜖𝑅 ⇒ (2,5)𝜖𝑅2 

 2,3 𝜖𝑅 𝑎𝑛𝑑 (3,4)𝜖𝑅 ⇒ (2,4)𝜖𝑅2 

 3,4 𝜖𝑅 𝑎𝑛𝑑  4,5 𝜖𝑅 ⇒ (3,5)𝜖𝑅2 

Thus, 

R
2
 = {(1, 1), (1, 2), (1, 3), (2, 5), (2, 4), (3, 5)} 

(ii) 

𝑅∞= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} 
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Example 1.27: 

Find a non-empty set and a relation on the set that satisfy each of the 

following combinations of properties. Simultaneously, draw a digraph of each 

relation. 

(i) Reflexive and symmetric but not transitive. 

(ii) Reflexive and transitive but not antisymmetric. 
 

Solution: 

(i) Let A = {a, b, c} and  

R = {{a, a), (b, b), (c, c), (a, b), (a, c), (b, a), (c, a)}. 

R is reflexive, since for each element a∈A, (a, a) ∈R. 

 R is symmetric, since both (a, b) and (b, a) are in R.  

Also (a,c) and (c,a) are in R. 

R is not transitive, because (b, a) and (a, c) are in R, but 

(b, c) ∉ R. 
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(ii) Let A = {a, b, c} and  

R = {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c), (b, a), (c, b), (c, a)}. 

R is reflexive. 

R is transitive, since aRb and bRc implies aRc. 

R is not antisymmetric because (a, b) ∈R and a≠b, then (b, a) ∈R  

 

 

 

Example 1.28: 

 Find the relation R for the digraph in the following figure. 
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Solution: 

R = {(a,b),(b,c),(a,c)}. 

R is transitive and antisymmetric. 

 

 

 

 

 

Example 1.29: 

Let R be a relation defined on A = {1,4,5}. The digraph of R is shown in the 

Figure. 
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Determine 𝑀𝑅and R. 

 

Solution: 

 Here R={(a,b),(b,c), (a,c)} 

     1  4   5 

𝑀𝑅  = 
1
4
5

 
1 1 1
1 1 0
0 1 1

  

 

 

Example 1.30: 

Let A= {a,b,c,d,e} and 𝑀𝑅= 

 
 
 
 
 
1
0
0
0
1

   1  
0
0
1
0

0
1
0
1
0

  0
1
1
0
0

  0
0
1
0
0  
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Find the relation R defined on A 

Solution: 

R = {(a, a), (a, b), (b, c), (b, d), (c, d),(c, e), (d, b), (d, c), (e, a)}.  

The digraph of R is  

 

Example 1.31: 

Let R be a binary relation on A = {a, b, c, d, e, f, g, h] represented by the 

following two-component digraphs. Find the smallest integers m and n such that 

𝑚 < 𝑛 𝑎𝑛𝑑 𝑅𝑚 = 𝑅𝑛  . 
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Solution: 

From the figures (a) and (b), the relation R is  

𝑅 =   𝑎, 𝑏 ,  𝑏, 𝑐 ,  𝑐, 𝑎 ,  𝑑, 𝑒 ,  𝑒, 𝑓 ,  𝑓, 𝑔 ,  𝑔,  ,  , 𝑑   

The relation matrix for Figure   (a) is 

  𝑎  𝑏 𝑐 

𝑅 = 

 𝑎
 𝑏
 𝑐

 
0 1 0
0 0 1
1 0 0

  

𝑅2 = 𝑅 𝑥 𝑅 =      
0 1 0
0 0 1
1 0 0

  
0 1 0
0 0 1
1 0 0

 = 
0 0 1
1 0 0
0 1 0
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𝑅3 = 𝑅2 𝑥 𝑅 =   
0 0 1
1 0 0
0 1 0

  
0 1 0
0 0 1
1 0 0

 = 
1 0 0
0 1 0
0 0 1

  

𝑅4 = 𝑅3 𝑥 𝑅 =    
1 0 0
0 1 0
0 0 1

  
 0 1 0
0 0 1
1 0 0

 = 
0 1 0
0 0 1
1 0 0

   = R 

 

For 3 nodes,    𝑅1= R
4
 

For 5 nodes,   𝑅1= R
6
 

Since the common multiple of 4 and 6 is 12, we conclude that 

  𝑅1= R
12

 

𝑇hus,   m = 1  and  n = 12. 

 

Transitive closure: 

Let R be a relation defined on a set A which is not transitive. 

The transitive closure of the relation R is the smallest relation 

containing R, having the transitive property.  

The transitive closure of Ris just the 

connectivity relation 𝑹∞and it is also represented as transitive (R). 

 

 

Results: 

(i) Let R be a relation on a set A. Then 𝑅∞  is the transitive closure of R. 

(ii) Let R be a relation defined on a finite set A with 𝐴 = 𝑛. Then,  

𝑅∞ = 𝑅 ∪ 𝑅2 ∪ … .∪ 𝑅𝑛  

Example 1.32: 

Find the transitive closure of the relation R = {(1,2),(2,3),(3,4),(2,1)} on 

the set  A = {1,2,3,4}. 

Solution: 

(i) Graphical representation:  

The digraph of R is shown in Figure 1.23.  
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Since 𝑅∞ is the transitive closure, we can proceed graphically by 

computing all the paths.  

Paths exists from the vertex 1 to the vertices 1,2,3 and 4.  

Thus the ordered pairs (1,1), (1,2),(1,3),(1,4) exists in 𝑅∞ .  

 Also, there exists paths from the vertex 2 to the vertices 1,2,3 and 4. 

Thus the ordered pairs (2,1),(2,2),(2,3),(2,4) exists in 𝑅∞ .  

The only other path formed is from vertex 3 to vertex 4. 

 Thus, Thus the ordered pair (3,4) exists in 𝑅∞ .  

Hence, the transitive closure of R is 

𝑅∞ =   1,1 ,  1,2 ,  1,3 ,  1,4 ,  2,1 ,  2,2 ,  2,3 ,  2,4 ,  3,4   
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(ii) Matrix Representation : 

The relation matrix of R is 

 

𝑀𝑅 =  

0
1
0
0

1
0
0

  0  

0
1
0
0 

0
0
1
  0

  

Now, we compute the powers of 𝑀𝑅  

 𝑀𝑅 2 = 𝑀𝑅°𝑀𝑅= 

0
1
0
0

1
0
0

  0  

0
1
0
0 

0
0
1

  0

 x   

0
1
0
0

1
0
0

  0  

0
1
0
0 

0
0
1

  0

  =   

1
0
0
0

0
1
0

  0  

1
0
0
0 

0
1
0

  0

  

 𝑀𝑅 3 =  𝑀𝑅 2°𝑀𝑅= 

1
0
0
0

0
1
0

  0  

1
0
0
0 

0
1
0

  0

 x   

0
1
0
0

1
0
0

  0  

0
1
0
0 

1
0
0

  0

   =  

0
1
0
0

1
0
0

  0  

0
1
0
0 

 1
 0
 0
  0

  

 𝑀𝑅 4 =  𝑀𝑅 3°𝑀𝑅= 

0
1
0
0

1
0
0

  0  

0
1
0
0 

 1
 0
 0
  0

   x  

0
1
0
0

1
0
0

  0  

0
1
0
0 

 0
 0
 1
 0

  = 

1
0
0
0

0
1
0

  0  

1
0
0
0 

0
1
0
  0

 =  𝑀𝑅
2 

Continuing in this way, it is observed that  𝑀𝑅 𝑛  equal  𝑀𝑅 2, if n is even and 

equal  𝑀𝑅 3 if n is odd and greater than 1. Thus 

𝑀𝑅
∞= 𝑀𝑅 ∪  𝑀𝑅 2 ∪  𝑀𝑅 3 =  

1
1
0
0

1
1
0

  0  

1
1
0
0 

1
1
1

  0

  

𝑅∞ =   1,1 ,  1,2 ,  1,3 ,  1,4 ,  2,1 ,  2,2 ,  2,3 ,  2,4 ,  3,4   

Example 1.33: 

Let A=(1,2,3,4} and R={(1,2),(2,3) (2,4)} be a relation defined on A. 

Compute transitive closure of R. 
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Solution: 

R = {(1,2),(2,3) (2,4)} 

𝑅2 = 𝑅°𝑅 =   1,2 ,  2,3 ,  2,4   °   1,2 ,  2,3 ,  2,4  =   1,3 ,  1,4  𝑅3

= 𝑅2°𝑅 =   1,3 ,  1,4  °  1,2 ,  2,3 ,  2,4  = ∅ 

𝑅4 =  ∅ 

Transitive closure of R = 𝑅∞ = 𝑅 ∪ 𝑅2 ∪  𝑅3  ∪ 𝑅4 

    = {(1,2), (2,3) (2,4)} ∪   1,3 ,  1,4  ∪ ∅ ∪ ∅ 

    = {(1,2), (2,3) (2,4),(1,3) (1,4)} 

  

Example 1.34: 

Let the relation R be defined on the set A=(1,2,3} as R={(1,2), (2,3), (3,3)}. 

Compute transitive(R). 

Solution: 

R = {(1,2), (2,3), (3,3)}. 

R2 = R°R =   1,2 ,  2,3 ,  3,3  °{ 1,2 ,  2,3 , (3,3)}  

=   1,3 ,  2,3 ,  3,3   and  

R3 = R2°R =   1,2 ,  2,3 ,  3,3  °  1,2 ,  2,3 ,  3,3   

                                           =   1,3 ,  2,3 , (3,3)  

transitive  𝑅 = 𝑅∞ = 𝑅 ∪ 𝑅2 ∪ 𝑅3= {(1,2), (2,3), (3,3), (1,3)} 
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UNIT II 

FUNCTIONS 

2.1. INTRODUCTION TO FUNCTION 

 The concept of a function is extremely important in discrete mathematics. 

Functions are used in defining sequences and strings concretely. 

 Functions also express the time duration taken by a computer to solve 

problems of a given size. 

Definition: 

Let A and B be any two sets. 

A function f from A to B is defined if for every element a𝜖A there exists a 

unique element b𝜖𝐵, such that f(a)=bor(a,b) 𝜖f. 

A function from A to B is denoted by f : AB. 

A is called the domain of f and B is called the codomain of f. 

If f(a) = b. then b is the image of a and a is the pre-image of  b. 

The range of f is the set of all images of elements of A. 

Functions are also called mappings or transformations. 

A function f from A to B has following properties  

i. Domain of f=A 

ii. If (a,b) 𝜖 f and (a,c) 𝜖 f, then b=c. 
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Example 2.1: 

Let A= 1,2,3 , B= 𝑎, 𝑏, 𝑐  and f =  1, 𝑎 ,  2, 𝑏 ,  3, 𝑐   is a function from 

A to B. Find the domain and range of the function f.  

Solution: 

Here, f(1)=a, f(2)=b, and f(3)=c 

The domain of f is A and  

The range of f is B. 

 

Example 2.2: 

Let A= 1,2,3 , B= 𝑎, 𝑏, 𝑐 and f=  1, 𝑎 ,  2, 𝑏 ,  3, 𝑎  .  Is f a function from A to 

B? If yes, find the domain and range of f. 

Solution: 

 Here, f(1) = a, f(2) = b, and f(3) = a. 

∴f is a function from A to B 

The domain of f is A and  

The range of f is  𝑎, 𝑏  

 

Example 2.3: 

Let f: Z N defined by f(x)=x
2
+2. Find the domain, Codomain and the range of f. 

Solution: 

The domain of the function is Z. 

The co-domain of f is N. 

Now, f(0) = 2,     f(1) = 3, f(2) = 6, and f(3) = 11, ….and 

   f(-1) = 3, f(-2) = 6, and f(-3) = 11, …. 

The range of f is  2,3,6,11,18 … …   

 

Example 2.4: 

Let A= 1,2,3,4 , B= 𝑎, 𝑏, 𝑐  and f=  1, 𝑎 ,  2, 𝑎 ,  3, 𝑏  . Check whether f is a 

function or not? 

Solution: 

The domain of f =  1,2,3  which is not equal to A. 

∴ f is not a function. 
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Example 2.5: 

Let R=  1, 𝑎 ,  2, 𝑏 ,  3, 𝑐 ,  1, 𝑏  be a relation from A= 1,2,3,4  to 

B= 𝑎, 𝑏, 𝑐 .Check whether f is a function or not? 

Solution: 

 Here (1,a) and (1,b) are in R but a≠b. 

 ∴ f is not a function. 

 

Example 2.6: 

Assume f as the function that assign the last two bits of a bit string of length 2 or 

greater to that string. i.e., f(11010)=10. 

Solution: 

 The domain of f is the set of all bit strings of length 2 or greater. 

 The co-domain and range are the set 𝑖𝑠  00,01,10,11 . 

 

2.2. Addition and Multiplication of function 

 Two real valued functions with the same domain can be added and 

multiplied. 

 Let f1 and f2 be two functions from AtoR. 

 Then f1+f2 and f1f2 are also functions from AtoR and are defined by 

  𝑓1 + 𝑓2 𝑥 =𝑓1 𝑥 + 𝑓2 𝑥  

 𝑓1𝑓2 𝑥 = 𝑓1 𝑥 𝑓2 𝑥  

 

Example 2.7: 

 Given that f1 and f2 are functions from RtoR in which f1(x)=x and 

f2(x)= 
1

𝑥
 -x. Determine the function f1+f2 and f1f2. 

 

Solution: 

 𝑓1 + 𝑓2 𝑥 = 𝑓1 𝑥 + 𝑓2 𝑥 = 𝑥 +
1

𝑥
− 𝑥 =

1

𝑥
 

And    𝑓1𝑓2 𝑥 = 𝑓1 𝑥 . 𝑓2 𝑥 =  𝑥  
1

𝑥
− 𝑥 = 1 −x

2 
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2.3. Classification of functions 

1. One to one function (Injective function) 

 A function f:AB is said to be one to one or injective, if distinct elements 

of domain set A have distinct images in co-domain set B. 

 f:A B is injective or one to one if  

𝑎1 ≠ 𝑎2 ⇒ 𝑓 𝑎1 ≠ 𝑓 𝑎2 for all 𝑎1 , 𝑎2 𝜖 A 

In other words f: A B is injective if  

𝑓 𝑎1 = 𝑓 𝑎2 ⇒   𝑎1 = 𝑎2∀ 𝑎1, 𝑎2 𝜖 A 

 

Example 2.8: 

 Check whether the function f from  𝑎, 𝑏, 𝑐, 𝑑 to  1,2,3,4,5  with f(a) = 4, 

f(b) = 5, f(c) =1 and f(d)=3 is  one to one or not?. 

Solution: 

 The function f in one to one since f assigns different values at the four 

elements. 

Example 2.9: 

 Examine the function 𝑓 𝑥 = 𝑥2from the set of integers to the set of integers 

for one to one  

Soln: 

 The function 𝑓 𝑥 = 𝑥2 is not one to one sincef(1)=f(-1), but 1≠ -1.  

 

Example 2.10: 

 Test the function 𝑓 𝑥 = 𝑥 + 1 for one to one. 

Solution: 

 𝑓 𝑥 = 𝑓(𝑦) 

⇒ 𝑥 + 1 = 𝑦 + 1 

⇒ 𝑥 = 𝑦 

(i.e) f(x)=f(y) ⇒ x=y 

∴ f is a one to one function. 

 

2. Onto (Surjective) function: 

A function f from A to B is said to be an onto or surjectivefunction if for 

every element b𝜖B, there is an element a𝜖A such that𝑓 𝑎 = 𝑏. 
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Example 2.11 : 

 Let f be a function from  𝑎, 𝑏, 𝑐, 𝑑  to  1,2,3  defined by f(a)=3, f(b)=2, 

f(c)=1 and f(d)=3. Check whether the function f is onto function or not. 

Solution: 

 Here, all the three elements of the co-domain have pre-images in the 

domain. 

So the function f is onto. 

 

Example 2.12 : 

 Is the function f(x) = x+1 from the set of integers to the set of integers onto? 

Solution: 

 Let f: ZZ 

 f(x) = y 

 ⇒ 𝑥 + 1 = 𝑦 

 ⇒ 𝑥 = 𝑦 − 1 

(ie) for any y𝜖𝑍 there exists an elements y-1𝜖 𝑍 such that f(y-1)=y. 

∴f is onto. 

 

3. One to one and onto : [Bijective function] 

A function f : A  B is said to be a bijective function if f is both one to one 

and onto . 

 

Example 2.13 : 

Let f be a function form  𝑎, 𝑏, 𝑐, 𝑑 to  1,2,3,4  with f(a) = 4, f(b)=2, f(c)=1 

and f(d)=3. Check whether the function is bijective or not. 

Solution : 

The domain of f  = 𝑎, 𝑏, 𝑐, 𝑑  . 

 The Codomain of f  = 1,2,3,4 . 

Function f  is one to one because every elements of the domain have images. 

 Function f is onto since  all the four  elements of the co-domain have pre-

images in the domain. 

Function f is one to one and onto. 

Hence f is a bijective function. 
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4. Identity function 

 A function f:A Adefined by f(a)=a ∀ a𝜖A is called an identity function for 

A and it is denoted by IA.  

Also, IA = {(a,a) : a∈A}. 

 The identity function IA assigns each element to itself.  

The function IA is one – to – one and onto. 

Hence, IA is a bijective  function.  

 

5. Constant function 

A function f : A  B is said to be a constant function if every element of A 

is assigned to the same element of B.  

In other words, if the range of function f containsonly  one element, then f is 

called a constant function. 

 

Example  2.14 : 

 A function 𝑓 𝑥 = 5, ∀𝑥𝜖𝑅 is a constant function since 

Rf = Range of f = {5}. 

 

2.4. Composition of Function 

Definition: 

 Let f: A B and g:BC be two functions. 

 The composition of functions f and g denoted by gof : AC and it is 

defined as 

 (gof)(a) = g(f(a)) 

 

Note: The composition of function is not commutative . 

i.e.,fog ≠ gof 

 

Example 2.15 : 

 Let f be a function from the set {a,b,c} to the set {1,2,3} such that f(a)=3, 

f(b)=2, and f(c)=1.  

Let g be a function from the set {a,b,c} to itself such that g(a)=b, g(b)=c, 

g(c)=a. 

Determine the composition of f and g and also the composition of g of. 
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Solution: 

 The composition f and g is defined by 

(fog)(a) = f(g(a)) =f(b)=2 

 (fog)(b)=f(g(b)) =f(c) =1 

 (fog)(c)=f(g(c))=f(a)=3 

The composition of g and f is gofand it is not defined. 

 

Example 2.16 : 

 Letf : Z Zbe a function defined by f(x)=2x+3. 

 Let g : Z Z be another function defined by g(x)=3x+2. 

Determine the compositions f o g and g o f. 

Solution: 

 The composition of f and g is fog : Z Z and it is defined as 

 (fog)(x)=f(g(x))=f(3x+2)=2(3x+2)+ 3 =6x+7 

 Also the composition of g and f is g o f : Z Z and it is defined as 

 (g o f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11 

 

Example 2.17 : 

Let f:RRbe defined by f(x) = x+1 and  

g: RR be defined as g 𝑥 = 2𝑥2 + 3.  

Find f o g and g of.  Is fog=gof? 

Solution : 

 f o g : Z Z 

 fog  x = f g x  = f 2x2 + 3 = 2x2 + 3 + 1 

        = 2x2 +4 

 g o f : Z Z 

(gof)(x) = g(f(x)) = g(x + 1) = 2(x + 1)2 + 3 

       = 2 (x2 + 2𝑥 + 1) + 3 

             = 2 x
2
 + 4x + 5 

Here, f o g and g of  are defined but 𝑔𝑜𝑓 ≠ 𝑓𝑜𝑔. 

 

Example 2.18 : 

 Letf: A  B, g:BC and h : CD be three functions. Then 

show that ho(gof)=(hog)of. 
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Solution : 

 Given that f:AB, g:BC, and h : C D 

 Then gof : AC  and hog : B D 

Hence, ho(gof): AD and (hog) of: AD. 

Let xϵA, yϵB and ZϵC such that f x = y and g y = z 

Then,  ho gof   x = h  gof (x) = h(g f x  = h g y  = h(z). 

  hog  of x =  hog  f(x) =  hog  y = h g y  = h(z). 

Thus 

 (hog)of=ho(gof), ∀𝑥 ∈ 𝐴 

Theorem 2.1 

 Let f:A B and g: BC be two functions. 

I. If f and g are injective then gof is injective. 

II. If f and g are surjective then gof is Surjective 

Proof: 

Given that f:A B and g:BC are two functions. 

 ∴ gof : A C 

I. Given that f and g are injective  

 Let  xϵA and yϵA 

 Let x ≠ y 

⇒ f x ≠ f(y)    ∴ f is injective  

⇒ g f x  ≠ g(f y )   ∴ g is injective  

⇒  gof x  ≠ (gof) y   

∴ g o f  is injective. 

II. Let z ∈ C 

 To prove that gof is surjective find an element x∈ 𝐴 such thatgof(x) = z. 

 Since f is surjective, for any y∈B there exists an element 𝑥𝜖𝐴 such 

that f(x)=y. 

Since g is surjective, for anyzϵA there exists an element y∈B such that 

g(y)=z. 

Now,  gof x = g f x   

  = g y  

  = z 

∴gof  is surjective. 
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Corollary: 2.1 

 The converse part of the theorem is not true. 

 i.e., If gof is injective, it is not necessary that f and g are individually 

injective. 

 

Theorem 2.2 

 The composition of any function with the identify function is the function 

itself. 

Proof: 

 Let f: A B be any function. 

 Let 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 such that f(x)=y. 

If  IA: AA is the identify function, then  

 𝐼𝐴 𝑥 = 𝑥 ∀ 𝑥 ∈ 𝐴 

 f o IA ∶ 𝐴 →B 

 𝑓𝑜𝐼A  𝑥 =f(𝐼𝐴 𝑥 ) 

  =  𝑓(𝑥) 

 ∴ foIA= A 

If IB: BBis the identity function, than 

IB y = y ∀ y ∈ B 

IB of ∶ A → B 

 IB of  x = IB f(x)  

      = f(x) 

IB of= f 

Thus f oIA = IBof = f. 

 

2.5 Inverse function 

 Let f:A B be a bijective function defined by f(a)=b, where a∈A and b∈B. 

 The inverse function of f is denoted by f
-1

 and f 
-1

: B A is defined by 

𝑓−1 𝑏 = 𝑎 where a∈A and b∈B. 

 If we can define the inverse function of f , then f is said to be invertible. 

 

 If the function f is not a bijective function then we cannot define the inverse 

function of f. 
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Theorem 2.3 

 Let f:AB be a bijective function and f is its inverse. For each x∈B 

 𝑓𝑜𝑓−1  𝑥 = 𝑥 

and for each 𝑥 ∈ 𝐴  𝑓−1𝑜 𝑓  𝑥 = 𝑥 

(i.e.,) 𝑓𝑜𝑓−1= IB and 𝑓−1𝑜 𝑓 = IA 

Proof: 

 Given that f:A B is a bijective function. 

 ∴ 𝑓−1:B A 

 fof
-1

: BB 

Let 𝑥 ∈ 𝐵and  f
-1

 (x)=z  for any z ∈ 𝐴 

 f(z) = x 

 𝑓𝑜𝑓−1  𝑥 = 𝑓 𝑓−1 𝑥   

  = f(z) 

  = x 

∴ 𝑓𝑜𝑓−1= 𝐼𝐵  

Let 𝑥 ∈ 𝐴 and  𝑓 𝑥 = 𝑧  for any 𝑧 ∈ 𝐵 

 ∴ 𝑓−1 𝑧 = 𝑥 

𝑓−1of : AA 

𝑓−1𝑜𝑓(𝑥)= 𝑓−1(𝑓 𝑥 ) 

                  = 𝑓−1 𝑧  

= 𝑥 

∴ 𝑓−1𝑜𝑓 =  IA 

 

Example: 2.19 

Let A = {a.b,c}, B= {1,2,3} and f ={(a,1), (b,3), (c,2)}. Determine the inverse. 

Solution : 

 f:AB is both one-to-one and onto. 

 i,e., f is bijective. 

 𝑓−1: B A 

𝑓−1=  1, 𝑎 ,  2, 𝑐 ,  3, 𝑏   

 

Example: 2.20 

Show that the function f(x)=x
3
 and 𝑔 𝑥 = 𝑥1/3 for all x∈R are inverses of 

each other. 
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Solution: 

 𝑓 𝑥 = 𝑥3 

𝑔 𝑥 = 𝑥1/3 

  𝑓𝑜𝑔  𝑥 = 𝑓 𝑔 𝑥   

  = 𝑓(𝑥
1

3) 

  =  𝑥1/3 
3
 

  = x 

∴ 𝑓𝑜𝑔 = 𝐼 

∴ 𝑓 = 𝑔−1 

 𝑔𝑜𝑓  𝑥 = 𝑔 𝑓 𝑥   

  = 𝑔(𝑥3) 

  =  𝑥3 1/3 

  = x 

 ∴ 𝑔 𝑜𝑓 = 𝐼 

 ∴ 𝑔 = 𝑓−1 

Thus the functions f and g are inverses of each other. 

 

Example  2.21: 

Let f: R→R be defined by f(x) = 3x- 4. Find a formula for f
-1

. 

Solution: 

f: R→R 

Given that f(x) = 3x-4 

Consider f(x) = f(y) 

⇒ 3x-4 =3y-4 

⇒ 3x = 3y 

⇒ x = y 

i.e., f(x) = f(y) ⇒   x=y 

∴ f is one- to- one. 

Let y be the image of x under the function f. 

 f(x) = y 

⇒3x-4 = y 

⇒3x = y+4 

⇒x = y + 
4

3
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For any yЄR there exists an element y + 4/3ЄR such that 

f 
𝑦+4

3
  = y 

∴f is onto. 

f is one-to-one and onto. 

∴f is bijective. 

We have f  
𝑦+4

3
  = y 

∴f
-1

(y) = y + 
4

3
 

f
-1

(x) = x +
4

3
which is the formula for f

-1
. 

Example2.22 : 

Let X = {a, b, c}.  Define f :X → Xsuch that f = {(a,b) , (b,a) , (c,c) }.  

Determine 

i)f
-1

 ii) f
2
 iii) f

3
 iv) f

4
 

Solution: 

i) f = { (a,b),(b,a),(c,c) } 

f(a) = b  f 
-1

(b) = a 

f(b) = a  f 
-1

(a) = b 

f(c) = c  f 
-1

(c) = c 

f
-1

 = {(b,a),(a,b),(c,c)} 

ii) f
2 
= fof 

f
2
 (a) = (fof)(a) = f(f(a)) = f(b) = a 

f
2
 (b) = (fof)(b) = f(f(b)) = f(a) = b 

f
2
 (c) = (fof)(c) = f(f(c)) = f(c) = c 

∴f
2
= {(a,a),(b,b),(c,c)} 

iii) f
3 
= fof

2
 

f
3
= (fof

2
)(a) = f(f

2
(a)) = f(a) = b 

f
3
= (fof

2
)(b) = f(f

2
(b)) = f(b) = a 

f
3
= (fof

2
)(c) = f(f

2
(c)) = f(c) = c 

∴  f
3 
= {(a,b),(b,a),(c,c)} 

iv) f
4
 = fof

3
 

f
4
(a)=(fof

3
)(a)=f(f

3
(a))=f(b)=a 

f
4
(b)= (fof

3
)(b) = f(f

3
(b)) = f(b) = a 

f
4
(c)= (fof

3
)(c) = f(f

3
(c)) = f(c) = c 

f
4
={(a,a),(b,b),(c,c)} 
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Example 2.23: 

Let f be the function from the set of integers to the set of integers such that 

f(x)=x+1.  Is f is invertible and if so, find its inverse. 

Solution: 

  f : Z→ Z 

  f(x)=x+1 

Consider that f(x)=f(y) 

                              ⟹x+1=y+1 

                              ⟹x =y 

i,e., f(x)=f(y)⟹ x=y 

∴f is one-to-one. 

Let y be the image of xunder the function f. 

f(x)=y 

x+1=y 

x=y-1 

For any y∈Z there exits an element  y-1 ∈ Z such that  f(y-1)=y 

∴ f is onto. 

f is both one-to-one and onto. 

∴f is bijective. 

∴f is invertible. 

We have f (y-1)=y 

∴f
-1

(y)=y-1 

f
-1

(x)=x-1 

Inverse of f is f
-1

 and f
-1

: Z→Z  defined by f
-1

(x)=x-1. 

 

Theorem 2.4: 

 If f: X→Y and g: Y→Z are bijections then (gof)
-1

=f
-1

og
-1 

Proof: 

 Since f and g are bijections, gof is a bijection. 

gof: X→Z 

(gof)
-1

: Z→X is also a bijection. 

f: X→ Y is a bijection. 

∴f
-1

: Y→ X is a bijection. 

g: Y→ Z is a bijection. 
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∴g
-1

: Z→Y is a bijection. 

∴f
-1

og
-1

: Z→ X is a bijection. 

Now let 𝑧 ∈ 𝑍 

 Since g is onto,  there exists an element 𝑦 ∈ 𝑌 such g(y)=z. 

g
-1

(z)=y 

 Since f is onto, for any 𝑦 ∈ 𝑌, there exists an element 𝑥 ∈ 𝑋 such that f(x)=y 

∴f
-1

(y)=x 

(f
-1

og
-1

)(z)=f
-1

(g
-1

(z))=f
-1

(y)=x 

i,e(f
-1

og
-1

)(z)=x ……………. (1) 

Now  (gof)(x) 

=g(f(x)) 

=g(y) 

=z 

∴(gof)
 -1

(z)=x ………………(2) 

From (1) & (2) we get  

(gof)
-1

=f
-1

og
-1 
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UNIT III 

MATHEMATICAL LOGIC 

 

3.1 Introduction: 

Mathematical logic emerged in the mid-19th century as a subfield of 

mathematics independent of the traditional study of logic. Mathematical logic is a 

subfield of mathematics exploring the applications of 

formal logic to mathematics. Logic is the basis of all mathematical and automated 

reasoning. The logical reasoning, also known as critical thinking or 

analytic reasoning, involves one's ability to isolate and identify the various 

components of any given argument. 

 

3.2. STATEMENT (Propositions) 

A Statement (or a proposition) is a declarative sentence (i.e, a sentence that 

declares afact) which is either True or False but not both and which is also 

sufficiently objective, meaningful and precise. 

The truth or falsity of a statement is called its truth value. 

The truth values “True and False” of a statement are denoted by True and 

False respectively. 

The value of a statement if true is denoted by 1 and false if expressed by 0. 

For example: 

Consider the following sentences. 

(i) Tamil Nadu is in India. 

(ii) 7+2=9. 

(iii) 5< 10 

(iv) Bangalore is in West Bengal 

(v) X+2= 7 

(vi) Where are you going? 

(vii) Roses are red. 

(viii) Go to bed. 
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The sentences (i),(ii),(iii),(iv) and (vii) are statements.  

Among these (iv) is false and others are true.  

(v)is not a proposition (or a statement),since it is neither true nor false. 

(vi) is a question, it is not a statement.  

(viii) is not a statement but it is a command only. 

 

Laws of Formal Logic 

The two famous laws of formal logic are 

1. Law of contradiction :For every proposition pit is not the same notion that p 

is both true and false. 

2. Law of intermediate exclusion 

If p is a statement (proposition), then either p is true or false is no possibility 

of intermediate exclusion. 

3.3. Basic Set of Logical operators/operations: 

The three basic logical operators/operations are conjuction  (Ʌ),disjunction 

(V), and negation (~ ) which corresponds to the English words like „and‟,‟or‟, and 

„not‟,respectively. 

1. Conjuction:(AND /  Ʌ) 

  If p and q are any two positions, then the conjunction of p and q is 

denoted by pɅq .  

  The truth value of  pɅq is true if p is true and q is true.Otherwise pɅq 

is also false. 

 The Truth Table for pɅq is given in Table  3.1 

P Q pɅq 

T T T 

T F F 

F T F 

F F F 
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Example 3.1: 

Find the conjunction of the proposition p and q when p is the proposition 

„Today is Saturday‟ and q is the proposition ‟ It is raining heavily today‟. 

Solution: 

  p: „Today is Saturday‟ . 

q: ‟ It is raining heavily today‟ 

pɅq :„Today is Saturday and it is raining heavily today”. 

 

2. Disjunction(OR,pvq) 

   If p and q are any two positions, then the disjunction of p and q 

is denoted by  pVq and it is read as „p or q‟.  

  The truth value of  pVq is true if any one of the propositions p or q is 

true.  If p and q are false, then pVq is false. 

 The Truth Table for pVq is given in Table  3.2 

 

p q pVq 

T T T 

T F T 

F T T 

F F F 

 

 Example3.2 : 

Find the disjunction of the propositions p and q where p is the proposition “Today 

is Saturday” and q is the proposition „It is raining heavily today‟. 

Solution: 

  p: „Today is Saturday‟ . 
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q: ‟ It is raining heavily today‟ 

pVq: „Today is Saturday or it is raining heavily today‟. 

 

Example 3.3 : 

Let p be „Suja Speaks Tamil‟ and let q be „Suja Speaks English‟. Give a simple 

verbal sentence which describes each of the following. 

(i) pVq  (ii) p˄q 

Solution: 

p : „Suja Speaks Tamil 

q  :Suja Speaks English‟‟  

(i) pVq:Suja Speaks Tamil or English. 

(ii) p˄q:Suja Speaks Tamil and English. 

 

Example3.4 : 

Assign a truth value to each of the following statements. 

(i) 5+5=10 ˅  1>2 

(ii) 6×4=21 ˅ 2+7=10. 

Solution: 

(i) True, since one of its components is true.  ,i.e.,5+5=10 is true. 

(ii) False, since both the components are false. 

 

3. Negation(NOT,~p) 

The negation of proposition p is denoted by ~p and it is read as „not p‟.  

The negation of a proposition can be formed by stating „It is not the case that‟ 

or „It is false that „. 

The truth value of ~p is represented in the following table. 
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p ~p 

T F 

F T 

 

 

Example3.5 : 

Find the negation of the following statements  

(i) Kolkata is in India. 

(ii) 4+4=9. 

Solution : 

(i) It is not the case that Kolkata is in India. 

Or Kolkata is not in India 

Or It is not the case that Kolkata is in India. 

(ii)  4+4 ≠ 9. 

Example 3.6 : 

Find the negation of the following propositions. 

(i) Today is Sunday. 

(ii) It is a rainy day. 

(iii) If it snows, Mani does not drive the car. 

Solution: 

(i) Today is not Sunday. 

(ii) It is not a rainy day. 

(iii) It snows and Mani drives the car. 
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Example 3.7 : 

Let p: Jemila is tall and q:Jemila is beautiful..Write the following statements in 

symbolic form. 

(i) Jemila is tall and beautiful. 

(ii) Jemila is tall but not beautiful 

(iii) It is false that Jemila is short or beautiful 

(iv) Jemila is tall or Jemila is short and beautiful 

Solution: 

(i) p˄q 

(ii) p˄˷𝑞 

(iii) ˷(˷p˅q)    

(iv)  p˅(˷p˄q) 

 

3.4. Proposition and truth tables: 

 Let P(p,q)  be a proposition constructed from logical variables p,q….. which 

take on the value TRUE(T) or (FALSE)(F), and which operate on the logical 

connectives ˄,˅,~.    𝑆uch an expression is called a proposition. 

Example3.8 : 

 Construct the truth table for ˷(p˅q) . 

Solution :   

p q p˅q ˷(p˅q) 

T T T F 

 T F T F 

F T T F 

F F F T 
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Connectives: 

 The statements which do not contain any of the connectives are called 

atomic statements or simple statements or Primitive Statements. 

 The common logical connectives used are negation(~), and(˄), or(˅), 

if…..then(→or⇒), if and only if(↔ 𝒐𝒓 ⟺) and equivalence(≡). 

Example 3.8 : 

Write the following statements in Symbolic form. 

(i) If Anand is not in a good mood or he is not busy, then he will go to 

Kharagpur. 

(ii) If Santhosh knows Object-Oriented Programming and Oracle, then he 

will get a job. 

Solution: 

(i) Let p: Anand is in good mood, 

q:Anand is busy and  

r:Anand will go to kharagpur 

The statement in symbolic form is (~𝑝˅~q)→ 𝑟 

(ii) Let p: Santhosh knows Object-Oriented Programming 

q:Santhosh knows Oracle 

 r:Santhosh will get a job  

The statement in symbolic form is (𝑝˄q)→ 𝑟 

Example3.9 : 

Let p: Babin is rich, q:Babin is happy. Write simple verbal sentences which 

describes each of the following statements. 

(i)p˅q  (ii)p˄q  (iii)q→p  (iv)p˅~q 

(v)q⟷p  (vi) ~p→q  (vii) ~~p  (viii)( ~p˄q) →p 
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Solution: 

(i) Babin is rich or Babin is happy. 

(ii) Babin is rich and Babin is happy. 

(iii) If Babin is happy then Babin is rich. 

(iv) Babin is rich or Babin is not happy. 

(v) Babin is happy if and only if Babin is rich. 

(vi) If Babin is not rich then Babin is happy. 

(vii) It is not true that Babin is not rich. 

(viii) If Babin is not rich and happy then Babin is rich. 

 

Compound Propositions: 

Compound or composite propositions (statements) are composed from sub-

propositions by means of logical operators or connectives. 

Example3.10 : 

(i) Write a compound proposition with sub-propositions „Sojan is 

intelligent‟ and Sojan studies every night‟. 

(ii) Write a compound proposition with sub-propositions‟ The sun is shining‟ 

and „the sky is blue‟. 

Solution : 

(i) Sojan is intelligent or studies every night. 

(ii) ‟The sun is shining and the sky is blue‟  

Example 3.11 : 

Construct  truth tables for each of the following compound propositions. 

(i) (p˄q)˅(p˄r)  (ii)~(p˅q)˅( ~p˄~q)  

Solution : 

(i) (p˄q)˅(p˄r) 
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p q R p˄q p˄r (p˄q)˅(p˄r) 

 

F F F F F F 

F F T F F F 

F T F F F F 

F T T F F F 

T F F F F F 

T F T F T T 

T T F T F T 

T T T T T T 

 

(ii) ) ~(p˅q)˅( ~p˄~q) 

 

p q ~p ~q p˅q ~(p˅q) (~p˄~q) ~(p˅q)˅( ~p˄~q) 

 

F F T T F T T T 

F T T F T F F F 

T F F T T F F F 

T T F F T F F F 
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Example 3.12 : 

Construct the truth table of p˄ (q˅r) 

Solution : 

P q r q˅r p˄(q˅r) 

T T T T T 

T T F T T 

T F T T T 

T F F F F 

F T T T F 

F T F T F 

F F T T F 

F F F F F 

 

Conditional Statement: 

 If p and q are any two statements, then the statement p→q which is read as 

„if p then q‟ is called a conditional statement. 

 If p is true and q is  false, then the conditional statement p→q is false. 

 Otherwise p→q is true.  

 The statement p is called the antecedent and the statement q is called the 

consequent (or conclusion). 

p→q is interpreted as ‟p is sufficient for q‟ or „q whenever p‟. 

The truth table for p→q is given in table 



 

56 
 

p q p→q 

T T T 

T F F 

F T T 

F F T 

 

Converse, Contrapositive and Inverse. 

 The converse of p→q is the proposition q→p. 

 The contrapositive of p→q is the proposition ~q→~p. 

The inverse of p→q is the proposition ~p→~q. 

 

Example3.13 : 

Write the conditional statement for the following statements. 

(i) Let p:Anub is a graduate and  

q :Anub is a lawyer  

(ii) Let p:The function is differentiable and 

q:The function is continuous. 

Solution : 

(i) p→q:If Anub is a graduate, then she is a lawyer. 

(ii) p→q : If the function is differentiable, then it is continuous. 
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Example 3.14 : 

Determine the contrapositive, the converse and the inverse of the conditional 

statement „The Team A wins whenever it is raining‟. 

Solution: 

Let p:It is raining and  

q : The Team A wins. 

 The given statement can be modified as 

  „If it is raining, then the Team A wins‟.  

It is the conditional statement p→q. 

 The contra positive of this conditional statement is 

~q→~p : If the Team A does not win, then it is not raining. 

The converse is 

q→p :If the Team A wins, then it is raining.  

The inverse is 

  ~p→~q : If it is not raining, then the Team A does not win. 

 

Biconditional Statement: 

 A statement of the form „p if and only if q‟ is called a biconditional 

statement. It is denoted by p⟷q. 

 If p and q have the same truth value, then p↔q is true. 

 If p and q have distinct truth values, then p↔q is false. 

The truth table for p↔q is shown in table 
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P q p↔q 

T T T 

T F F 

F T F 

F F T 

 

Example3.15 : 

Write any two biconditional statements. 

Solution : 

(i) An integer is even if and only if it is divisible by 2. 

(ii) Two lines are parallel if and only if they have the same slope. 

 

Example3.16 :  

Show that p⇒q is the same as ~q⇒ ~p. 

i.e., The contrapositive ~q→~p of a conditional statement p→q always has 

the same truth value as p→q. 

Solution: 

p q ~p ~q ~q⇒ ~p p⇒q 

T T F F T T 

T F F T F F 

F T T F T T 

F F T T T T 
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3.5 Algebra of propositions : 

Various laws useful to simplify the  propositions are listed in the following table.  

1. (a)p˅p ≡ p Idempotent  laws (b)p˄p≡p 

2. (a)(p˅q)˅r≡p˅(q˅r) Associative laws (b)(p˄q)˄r≡p˄(q˄r) 

3. (a)p˅q≡q˅p Commutative laws (b)p˄q≡q˄p 

4. (a)p˅(q˄r) ≡(p˅q)˄(p˅r) Distributive laws (b)p˄(q˅r) ≡(p˄q)˅(p˄r) 

5. (a)p˅T≡T Identity laws (b)p˄T≡p 

6. (a)p˅F≡p Identity laws (b)p˄F≡F 

7. (a)p˅~p ≡T Complement laws (b)p˄~p≡F 

8. (a) ~T≡F  (b) ~F≡T 

9.  ~~p=p Involution law  

10. (a) ~(p˅q) ≡ ~p˄~q Demorgan‟s law (b) ~(p˄q) ≡ ~p˅~q 

 

 

 

3.6. Tautologies and Contradictions: 

A propositions P(p,q) is called a tautology if the last column of their truth 

tables contain only T. i.e., If the propositions are true for any truth values of their  

variables, then such propositions are called tautologies. 

 A proposition P(p,q) is called a contradiction if it contains only F in the last 

column of its truth table. 

A proposition that is neither a tautology nor a contradiction is called a 

contingency. 

 



 

60 
 

Example3.17 : 

Show that the proposition  p˅~p is a tautology. 

Solution : 

P ~p p˅~p 

T F T 

F T T 

Since the truth value of  p˅~p is true for all values of p, the proposition is a 

tautology. 

 

Example3.18 : 

Show that the proposition  p˄~p is a tautology. 

Solution : 

 

P ~p p˄~p 

T F F 

F T F 

Since the truth value of p˄~p is true for all values of p, the proposition is a 

tautology. 
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Example3.19 : 

Verify that the proposition 𝑝˅~(𝑝˄𝑞) is a tautology. 

Solution : 

p q p˄q ~(p˄q) p˅~(p˄q) 

F F F T T 

F T F T T 

T F F T T 

T T T F T 

Since the truth value of  p˅~(p˄q) is true for all values of p, the proposition is a 

tautology. 

 

Example3.20 : 

Show that the following  𝑝˄~𝑞 ˅~(𝑝˄~𝑞) is a tautology. 

Solution :  

p q ~q 𝑝˄~𝑞 ~(𝑝˄~𝑞) (p˄~𝑞)˅~(𝑝˄~𝑞) 

T T F T F T 

T F T F T T 

F T F T F T 
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F F T T F T 

Since the truth value of  (p˄~𝑞)˅~(𝑝˄~𝑞) is true for all values of p, the 

proposition is a tautology. 

 

Example 3.21 : 

Show that   𝑝 →  𝑞 → 𝑟 ⟺ 𝑝 →  ~𝑞˅𝑟 ⟺  ~𝑝˄𝑞 ˅𝑟 

Solution : 

𝑝 →  𝑞 → 𝑟  

⟺ 𝑝 →  ~𝑞˅𝑟   [ 𝑆𝑖𝑛𝑐𝑒 𝑝 → 𝑞 ≡ ~𝑝˅𝑞] 

⟺ ~𝑝˅ ~𝑞˅𝑟 [ 𝑆𝑖𝑛𝑐𝑒  𝑝 → 𝑞 ≡ ~𝑝˅𝑞] 

⟺  ~𝑝 ˅~ 𝑞 ˅ 𝑟[𝑆𝑖𝑛𝑐𝑒 𝑏𝑦 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤 𝑝˅(𝑞˅𝑟) ≡ (𝑝˅𝑞)˅𝑟] 

⟺  ~ 𝑝˄𝑞  ˅ 𝑟 𝐵𝑦 𝐷𝑒 − 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤 ~ 𝑝˄𝑞 ≡ ~𝑝˅~𝑞  

⟺  𝑝˄𝑞 → 𝑟   𝑆𝑖𝑛𝑐𝑒 𝑝 → 𝑞 ≡ ~𝑝˅𝑞  

Hence 

 𝑝 →  𝑞 → 𝑟 ⟺ 𝑝 →  ~𝑞˅𝑟 ⟺  ~𝑝˄𝑞 ˅𝑟 

 

Example 3.22: 

Show that  𝑝 → 𝑞 ˄ 𝑟 → 𝑞 ⟺  𝑝˅𝑟 → 𝑞. 

Solution: 

𝑝 → 𝑞 ⟺ ~𝑝˅𝑞 

𝑟 → 𝑞 ⟺ ~𝑟˅𝑞 
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Consider ( 𝑝 → 𝑞)˄(𝑟 → 𝑞) 

⟺  ~𝑝˅𝑞 ˄(~𝑟˅𝑞) 

⟺ (~𝑝˄~𝑟)˅𝑞 [ 𝑆𝑖𝑛𝑐𝑒  𝑝˄𝑞 ˅𝑟 ≡  𝑝˅𝑟 ˄ 𝑞˅𝑟 ] 

⟺ ~ 𝑝˅𝑟 ˅𝑞 [𝑆𝑖𝑛𝑐𝑒 ~(𝑝˅𝑞) ≡ ~𝑝˄~𝑞] 

⟺  𝑝˅𝑟 ⟶ 𝑞 [𝑆𝑖𝑛𝑐𝑒 𝑝 → 𝑞 ≡ ~𝑝˅𝑞 

Hence  𝑝 → 𝑞 ˄ 𝑟 → 𝑞 ⟺  𝑝˅𝑟 → 𝑞. 

 

3.7. Logical Equivalence: 

 Two propositions P(p,q……….) and Q(p,q…………….) are said to be 

logically equivalent or simply equivalent or equal denoted by 

P(p,q…..) ≡Q(p,q…..)  if they have the identical truth tables.  

The propositions P(p,q) and Q(p,q…..) are logically equivalent if  P↔Q is a 

tautology. 

The equivalence of P and Q is also denoted by P⟺Q. 

 

State and prove De-Morgan’s law: 

 If p and q are any two propositions, then 

I. ~ 𝑝˅𝑞 ≡  ~𝑝 ˄(~𝑞) 

II. ~ 𝑝˄𝑞 ≡  ~𝑝 ˅(~𝑞) 

Proof  : 

I.~ 𝑝˅𝑞 ≡  ~𝑝 ˄(~𝑞) 
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P q ~p ~q Pvq ~(p˅q) (~p)˄( ~q) 

T T F F T F F 

T F F T T F F 

F T T F T F F 

F F T T F T T 

Since the two columns headed by ~ 𝑝˅𝑞 and  ~𝑝 ˄(~𝑞) of the truth table are 

identical, 

~ 𝑝˅𝑞 ≡  ~𝑝 ˄(~𝑞). 

 

II ~ 𝑝˄𝑞 ≡  ~𝑝 ˅(~𝑞) 

P q ~p ~q p ˄ q ~ 𝑝˄𝑞   ~𝑝 ˅(~𝑞) 

T T F F T F F 

T F F T F T T 

F T T F F T T 

F F T T F T T 

Since the two columns headed by ~ 𝑝˄𝑞 and  ~𝑝 ˅ ~𝑞 of the truth table are 

identical, 

                  ~ 𝑝˄𝑞 ≡  ~𝑝 ˅(~𝑞) 
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Example3.23 : 

Show that p˄(q˅r) is equivalent to (p˄q)˅(p˄r) 

Solution : 

p q r q˅r p˄(q˅r) p˄q p˄r (p˄q)˅(p˄r) 

T T T T T T T T 

T T F T T T F T 

T F T T T F T T 

T F F F F F F F 

F T T T F F F F 

F T F T F F F F 

F F T T F F F F 

F F F F F F F F 

Since the two columns headed by p˄(q˅r) and (p˄q)v(p˄r) of the truth table are 

identical, 

 p˄(q˅r) ≡ (p˄q)˅(p˄r) 

 

Example 3.24 : 

Show that 𝑝 ⟺ 𝑞 and  𝑝 ⟹ 𝑞 ˄(𝑞 ⟹ 𝑝) are equivalent. 

p Q 𝑝 ⟺ 𝑞 𝑝 ⟹ 𝑞 

 

𝑞 ⟹ 𝑝 

 

 𝑝 ⟹ 𝑞 ˄( 𝑞 ⟹ 𝑝) 

T T T T T T 
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T F F F T F 

F T F T F F 

F F T T T T 

Since the columns headed by 𝑝 ⟺ 𝑞 and  𝑝 ⟹ 𝑞 ˄(𝑞 ⟹ 𝑝) of the truth table are 

identical, 

𝑝˄ 𝑞˅𝑟 ≡  𝑝˄𝑞 ˅(𝑝˄𝑟) 

Example 3.25 : 

Among the two restaurants next to each other,one has a sign that says‟Good food is 

not cheap‟ and the other has a sign that „cheap food is not good‟. 

 Investigate the signs regarding their equivalence. 

Solution: 

Let p :Food is good and  

q:Food is cheap. 

The first sign says 𝑝 → ~𝑞 and the second one says 𝑞 → ~𝑝. 

p q ~p ~q 𝑝 → ~𝑞 𝑞 → ~𝑝 

F F T T T T 

F T T F T T 

T F F T T T 
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T T F F F F 

From the truth table we conclude that, both the signs are equivalent. 

 

3.8. Normal Forms: 

 Some of the basic normal forms are: 

I. Disjunctive normal form(dnf) 

II. Conjunctive normal form(cnf) 

 

I. Disjunctive normal form(dnf) 

 In a logical expression, a product of the variables and their negations is 

called an elementary product or minterm. 

Example :P˄~R,Q˄P˄~R etc. 

An elementary product is identically false if and only if it contains atleast 

one pair of factors in which one is the negation of the other. 

 A logical expression is called a disjunctive normal form,abbreviated as 

dnf,if it is a sum of elementary products. 

II. Conjunctive Normal form (cnf) 

 In a logical expression the sum of the variables and their negation is called 

an elementary sum. 

 Example :P˅~Q,~P˅~Q˅~R 

An elementary sum is identically true if and only if it contains atleast one 

pair of factors in which one is the negation of the other. 

 A logical expression is called a conjunctive normal form, abbreviated as 

cnf, if it is a product of elementary sums. 
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9.Find the inverse of the following 

 A= 
1 −2 2
2 −3 6
1 1 7

  

 𝐴 = 1 −21 − 6 + 2 14 − 6 + 2 2 + 3  

=1(-27)+2(8)+2(5) 

=-27+16+10 

=-1 

∴ 𝐴 𝑖𝑠 𝑎 𝑘𝑛𝑜𝑛 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 

∴  𝐴−1 𝑒𝑥𝑖𝑠𝑡𝑠 

Cofactors of elements of |A| are 

A11=(-21-6)=-27 

A12=-(14-6)=-8 

A13=(2+3)=5 

A21=-(-14-2)=16 

A22=(7-2)=5 

A23=-(1+2)=-3 

A31=(-12+6)=-6 

A32=-(6-4)=-2 

A33=(-3+4)=1 

Adj A=(Aij)
T
 

 
−27 16 −6
−8 5 −2
5 −3 1

 = 𝑎𝑑𝑗 𝐴 

𝐴−1 =
1

 𝐴 
. 𝑎𝑑𝑗 𝐴 
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 =
1

2
 

1 −1
0 1

  

𝐴−1 =  
1

2
−

1

2
0 1

  

Find the inverse of the matrix  
1 1 3
1 3 −3

−2 −4 −4
  

Solution: 

 Let A= 
1 1 3
1 3 −3

−2 −4 −4
  

|A|=1(-12-12)-1(-4-6)+3(-4+6) 

 =1(-24)-1(-10)+3(2) 

 =24-1(-10)+6 

 =-24+10+6 

 =-8 

 |A|≠ 0 

 ∴ A is a non singular matrix 

 A-1 exists 

Cofactors of elements of |A| are 

A11= 
3 −3

−4 −4
 =-12-12=-24 

A12=−  
1 −3

−2 4
 =-(-4+6)=-(-10)=10 

A13= 
1 3

−2 −4
 =-4+6=2 

A21=−  
1 3

−4 −4
 =-(-4+12)=-18 

A22= 
1 3

−2 −4
 =-4+6=2 
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A23=−  
1 1

−2 −4
 = 

A31=(-12+6)=-6 

A32=-(6-4)=-2 

A33=(-3+4)=1 

adj A=(Aij)
T 

 
−27 16 −6
−8 5 −2
5 −3 1

 =adj A 

𝐴−1 =
1

 𝐴 
. 𝑎𝑑𝑗 𝐴 

=
1

−1
 
−27 16 −6
−8 5 −2
5 −3 1

  

= 
27 −16 6
8 −5 2

−5 3 1
  

(ii)B= 
1 3 −4 
1 5 −1
3 13 −6

  

|B|=1(-30+13)-3(-6+3)-4(13-15) 

=1(-17)-3(3)-4(-2) 

=-17+9+8 

|B|=0. 

B is a singular matrix 

∴ B-1 does not exists. 

 

Example: 5.14 

If A= 
2 3
4 8

  verify that A(adj A)=(adj A)A=det(A)I 
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Solution: 

Let A= 
2 3
4 8

  

|A|=16-12 

|A|=4 

adj A= 
8 −3

−4 2
  

A×(adj A)= 
2 3
4 8

  
8 −3

−4 2
  

 
16 − 12 −6 + 6
32 − 32 −12 + 16

  

= 
4 0
0 4

  

(adj A)×A= 
8 −3

−4 2
  

2 3
4 8

  

=  
16 − 12 24 − 24
−8 + 8 −12 + 16

  

=  
4 0
0 4

  

4𝐼 =  
1 0
0 1

  

=  
4 0
0 4

  

∴A(adj A)=adj A(A)=det I 

Hence it proved 

Determinant of a matrix: 

 Determinant of a square matrix of may be denoted by det A or |A| or 

∆.Determinant of a square matrix of order 1,ie.A= a  

  Det A=|A|=a 

Determinant of 2×2 matrix(i.e.,of order 2) 
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 A= 
𝑎11 𝑎12

𝑎21 𝑎22
  

 |A|=a11a22-a21-a12 

Minor and co-factor: 

 Let A=[aij]m×n.The minor of an element aij of determinant of a matrix A 

is the determinant formed  by suppreving the ith row and the jth coloumn in 

which the element aij exists. 

 The minor of the element aij is denoted by Mij. 

 The minor of the element of a determinant of n is a determinant of 

order(n-1). 

 The cofactor of an element aij is denoted by Aij is defined as Aij=(-

1)i+jMij. 

For example: The minor and co-factor of the elements a11,a22 and a33 of the 

element. 

 ∆= 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

  

A= 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

  

Can be obtained as follows 

M11(minor of all)= 
𝑎22 𝑎23

𝑎32 𝑎33
  

 =a22a33-a23a32 

A11(co-factor of a11)=(-1)2+2 M22 

M22(Monior of a32)= 
𝑎11 𝑎13

𝑎21 𝑎23
  

=a11a23-a13a31 

A22(cofactor of a22)=(-1)2+2 M22 

=+(a11a23-a13a31) 
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M32(monior of a32)= 
𝑎11 𝑎13

𝑎21 𝑎23
  

=a11a23-a13a21 

A32(co-factor of a32)=(-1)3+2 M32=-(a11a23-a13a21_ 

Expansion of the Determinant: 

 The determinant ∆ of a matrix A can be expressed as the sum of the 

products of elements of any row(or coloumn) by their corresponding co-

factors. 

∆=a11A11+a12A12+a13A13 

= 𝑎11  
𝑎22 𝑎23

𝑎32 𝑎33
 − 𝑎12  

𝑎21 𝑎23

𝑎31 𝑎33
 + 𝑎13  

𝑎21 𝑎22

𝑎31 𝑎32
  

𝑎11 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12 𝑎21𝑎33 − 𝑎23𝑎31 + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31) 

∆=  (−1)𝑖+𝑗

3

𝑗 =1

 𝑎𝑖𝑗𝑀𝑖𝑗 

 

=  𝑎𝑖𝑗{(−1)𝑖+𝑗

3

𝑗=1

𝑀𝑖𝑗} 
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UNIT IV 

MATRIX ALGEBRA 

 

4.1. INTRODUCTION 

 Matrix algebra plays an important and powerful role in quantitative analysis 

of management decisions in several disciplines such as production, marketing, 

finance, economics, computer science, discrete mathematics, network analysis, 

Markov models, input-output models and some statistical models. All these models 

are built by establishing a system of linear equations. 

 Matrices are useful because they enable us to consider an array of numbers  

as single object, denote it by a single symbol, and perform operations with these 

symbols in a precise form. 

Definition of a Matrix 

 A rectangular array of entries arranged in m rows and n columns is called a 

matrix of order m by n, written as m×n matrix. 

 A matrix is usually denoted by a boldface capital letter enclosed within 

brackets for example A or [aij] respectively. 

 aij represents the element in the i
th
 row and the j

th
 column of a matrix A. 

 A=[aij]m×n,1≤i <m , 1≤j≤n. 

 A is a matrix of order m×n. 

 In general an m×n matrix A may be written as 

 𝐴 =  

𝑎11 𝑎12 …
𝑎21 𝑎22 ……
𝑎𝑚1

…
𝑎𝑚2

…
…

𝑎1𝑛
𝑎2𝑛…
𝑎𝑚𝑛

  

The i
th
 row consists of the entries 

 ai1,ai2,………………….ain 

The j
th

 column consists of the entries 

 a1j,a2j,………………….amj 
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Example : 𝐴 =  
1 2 3
1 5 7

  is a matrix of order 2 x 3.  

 

NOTE : A matrix of order m×n contains mn elements. 

 

4.2. Types of Matrices 

 Let A=[aij]m×n ……………  (i) 

1. Rectangular and Square Matrices 

If m≠ n ,then the matrix A is a rectangular matrix of order m×n. 

If m=n, then the matrix A is a Square matrix of order n. 

 If A=[aij]n×n is a Square matrix, then the principal/leading  diagonal elements  

are aii. 

The diagonal elements of Aare a11,a22,a33,…………,ann. 

 The sum of principal diagonal elements of a square matrix is known as trace 

of the matrix. 

Trace of 𝐴 =  𝑎𝑖𝑖 = 𝑎11 + 𝑎22 +𝑛
𝑖=1 … + 𝑎𝑛𝑛  

 

Example:1 

  
2 2 3
3 5 7

  is a  rectangular matrix of order 2×3. 

Example:2 

 A=[5], 𝐵 =  
2 3
5 4

 ,and C =  
3 1 5
1 5 1
7 5 2

  

 A is a square matrix of order 1. 

B is a square matrix of order 2and  

C is a square matrix of order 3. 

Trace of B=2+4=6 

Trace of C=3+5+2=10 
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2. Row matrix or a Row Vector 

 A matrix having only one row and any finite number of columns is called a 

row matrix or a row vector. 

 If m=1 then the matrix A is a 1×n matrix. 

Example:  

(1 5 3 4) is a row matrix of order 1×4 and 

(5) is a row matrix of order 1×1. 

 

3. Column Matrix or a Column Vector 

 A matrix having only one column and any finite number of rows is called a 

column matrix or a column vector. 

 If n=1 in equation (1) then the matrix A is an m×1 matrix. 

Example : 

  
1
2
3
 is a  coloumn matrix of order 3×1. 

 

4. Zero or Null matrix 

 A matrix whose elements are all zero is called a Zero matrix or Null matrix. 

A zero matrix of order m×n is denoted by Om×n. 

Example: 

 (0 0) is a zero matrix of order 1×2 and is written as 01×2 

 
0 0
0 0

  is a null matrix of order 2×2 and is represented as 02×2 

 

5. Diagonal Matrix 

 A square matrix of order n having non-zero elements on the main diagonal is 

called a diagonal matrix of order n. 
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Example 1 : 

  
4 0
0 1

  is a diagonal matrix of order 2×2 . 

Example2 : 

  
2 0 0
0 5 0
0 0 6

  is a diagonal matrix of order 3×3. 

 

6. Scalar Matrix 

 A Square matrix in which every non-diagonal element is zero and all 

diagonal elements are equal is called a scalar matrix. 

Example 1 :  
5 0
0 5

 is a Scalar matrix of order 2×2 

Example2 :  
7 0 0
0 7 0
0 0 7

  is a Scalar matrix of order 3. 

 

7. Unit matrix or Identity matrix 

 If A is a square matrix of order n in which every non-diagonal element is 

zero and every diagonal element is 1, then the matrix A is called a unit matrix or 

identity matrix of order n and it is denoted by In. 

Example: 

 I1=[1] is the identity matrix of order 1. 

I2=  
1 0
0 1

 is the identity matrix of order 2. 

 I3=  
1 0 0
0 1 0
0 0 1

  is the identity matrix of order 3. 

8. Comparable Matrices 

 Two matrices A=[aij]m×n and B=[bij]m×n are said to be comparable matrices if  

they are of the same order.  
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Example: 

The matrices 
4 1 −2
3 2 −4

  and  
6 −3 −6

−1 0 2
  are comparable because 

both are of the order 2×3. 

9. Equal matrices 

 Two matrices A=[aij]m×n and B=[bij]p×q are said to be equal, written as A=B, 

if they are of the same order and their corresponding elements are equal. 

Example:  

Let A= 
𝑎11 𝑎12

𝑎21 𝑎22
 ,  B= 

4 5
1 −1

  

A=B if and only if 

 a11=4,  a12=5 

 a21=1,  a22= -1 

10. Upper triangular Matrix 

 If all elements below the main diagonal are zero, then the matrix A is called 

an upper triangular matrix. 

Example:  
1 2 0
0 2 1
0 0 3

  is an upper triangular matrix of order 3. 

11. Lower triangular matrix 

 If all elements above the main diagonal are zero, then the matrix A is called 

a lower triangular matrix. 

Example:1 A= 
1 0 0
4 3 0
5 3 6

  is a lower triangular matrix of order 3. 

Example:2  
1 0 0
2 2 0
0 2 3

  is a lower triangular matrix of order 3. 
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5.3. Operations on Matrices 

 There are several operations that can be performed on matrices. They are 

described below. 

1. Addition of Matrices 

 If A=[aij] m×n and B=[bij]m×n are two matrices of the same order, then their 

sum A+B is a matrix of order m×n obtained by adding the corresponding elements 

of A and B. 

 Thus, A+B=[aij]m×n+[bij]m×n=[aij+bij]m×n 

Sum of two matrices A + B exists only when A and B are of the same order. 

Example: 

(i) Let A= 
6 2 −2
3 2 −2

  and B= 
4 −3 −6

−1 1 4
  

A+B= 
6 + 4 2 − 3 −2 − 6
3 − 1 2 + 1 −2 + 4

  

  = 
10 −1 −8
2 3 2

  

(ii) Let A= 
1 2
4 0

  and B= 
2 3 −6

−4 0 9
  

Matrix A is of order 2×2. 

Matrix B is of order 2×3. 

Hence A+B is not defined. 

2. Subtraction of matrices 

 If A and B are two matrices of the same order, then their difference is given 

by A-B=A+(-B),where the matrix (-B) is the negative of the matrix B. 

Example: A= 
3 4
2 2

 , B= 
1 3

−2 5
  

(-B)= 
−1 −3
2 −5

  

Then 

A − B = A +  −B =  
3 4
2 2

 +  
−1 −3
2 −5
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=  
3 + (−1) 4 + (−3)

2 + 2 2 + (−5)
  

                    =  
2 1
4 −3

  

 

3. Scalar multiple of a matrix 

Let A=[aij] be an m×n matrix and a c be a scalar (any number c). 

Then cA = [caij] obtained by multiplying each entry in A by c is called scalar 

multiple of A by c. 

 𝐴 =  
2 −1
0 9
9 −4

   

 −𝐴 =  
−2 1
0 −9

−9 4
  

 Also   5𝐴 =  
5 x 2 5 x  −1 
5 x 0 5 x 9
5 x 9 5 x  −4 

  

    = 
10 −5
 0 45
45 −20

  

0A =  
0 0
0 0
0 0

  

 

4. Multiplication of matrices 

 Let A be an m×n matrix and B be an n×p matrix.  

If the number of columns of A is equal to the number of rows of B, then the 

multiplication of matrices AB is possible. 

 To obtain the (i,j)
th
 element of matrix AB ,multiply the i

th
 row elements of 

matrix A by the j
th 

column elements of matrix B.  

The i
th
 row of A is [ai1,ai2,……ain] and  the j

th
 column entries of B are 
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b1j , b2j , ……, bnj . 

 If the product matrix AB is C, then  

cij=ai1b1j+ai2b2j+…+ainbnj 

=  𝑎𝑖𝑘  𝑏𝑘𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑝

𝑛

𝑘=1

 

 

4.4. Related Matrices 
 

1. Transpose of a Matrix 

 If A is an m×n matrix, then the matrix obtained by interchanging the rows 

and columns of A is called the transpose of A. 

 Transpose of the matrix A is denoted by A
T
 or A

‟
. 

Example: 

A = 
1 2 −1
3 0 2
4 5 0

   

Then A
T
= 

1 3 4
2 0 5

−1 2 0
  

Note :(A
T
)

T
=A 

 

2. Symmetric and Skew-Symmetric matrices 

 A square matrix A is said to be symmetric if A
T
= A. 

A square matrix A is said to be skew-symmetric if A
T
=-A(or A=-A

T
)

. 

 
Thus a square matrix A=[aij]n×n is said to be  

Symmetric if aij=aji ∀ 𝑖 𝑎𝑛𝑑 𝑗 and  

Skew-symmetric if aij= -aji ∀ 𝑖 𝑎𝑛𝑑 𝑗 
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Example: The matrix 𝐴 =  
𝑎 𝑏 𝑐
𝑏 𝑑 𝑒
𝑐 𝑒 𝑓

  is a symmetric matrix. 

The matrix 𝐴 =  
0 𝑎 𝑏

−𝑎 0 𝑐
−𝑏 −𝑐 0

  is a skew-symmetric matrix.  

 

Note : 

(i) If A is symmetric matrix of order n, then the number of independent  

elements=
1

2
𝑛(𝑛 + 1). 

(ii) If A is a Skew-Symmetric matrix of order n, then the number of 

independent elements=
1

2
𝑛(𝑛 − 1). 

 

3. Complex Matrix 

 If each or a few elements of a matrix are complex numbers, then the matrix 

is called a complex matrix. 

 A complex matrix can be expressed in the form X+iY, where X and Y are 

real matrices. 

Example: 𝐴 =  
2 + 5𝑖 1
3 − 2𝑖 1

 =  
2 1
3 1

 + 𝑖  
5 0

−2 0
 = 𝑋 + 𝑖𝑌 is a complex 

matrix. 

 

4. Conjugate Matrix 

 If A=[aij]m×n, then the matrix obtained by replacing each element of A by its 

complex conjugate is called the conjugate matrix of A and is denoted by Ā. 

Example: 

 𝐼𝑓 𝐴 =  
1 − 𝑖 4 1 − 𝑖
2 + 𝑖 −1 − 𝑖 2

 , 

then Ā= 
1 + 𝑖 4 1 + 𝑖
2 − 𝑖 −1 + 𝑖 2

  

Note :(Ā)=A. 
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Example: 

 If 𝐴 =  
1 2 −1
3 0 2
4 5 0

 𝑎𝑛𝑑 𝐵 =  
1 0 0
2 1 0
0 1 3

  show that (AB)
T
=B

T
A

T
. 

Solution: 

 AB= 
1 2 −1
3 0 2
4 5 0

 ×  
1 0 0
2 1 0
0 1 3

  

 AB=

 
1 × 1 + 2 × 2 +  −1 × 0 1 × 0 + 2 × 1 +  −1 × 1 1 × 0 + 2 × 0 +  −1 × 3

3 × 1 + 0 × 2 + 2 × 0 3 × 0 + 0 × 1 + 2 × 1 3 × 0 + 0 × 0 + 2 × 3
4 × 1 + 5 × 2 + 0 × 0 4 × 0 + 5 × 1 + 0 × 1 4 × 0 + 5 × 0 + 0 × 3

  

 = 
1 + 4 + 0 0 + 2 + (−1) 0 + 0 + (−3)
3 + 0 + 0 0 + 0 + 2 0 + 0 + 6

4 + 10 + 0 0 + 5 + 0 0 + 0 + 0
  

 𝐴𝐵 =  
5 1 −3
3 2 6

14 5 0
  

 (AB)
T
 =  

5 3 14
1 2 5

−3 6 0
 … … … … … .  1  

𝐵𝑇 =  
1 2 0
0 1 1
0 0 3

  

 

𝐴𝑇 =    
1 3 4
2 0 5

−1 2 0
  

𝐵𝑇𝐴𝑇 =  
1 2 0
0 1 1
0 0 3

  
1 3 4
2 0 5

−1 2 0
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  = 
1 + 4 + 0 3 + 0 + 0 4 + 10 + 0
0 + 2 − 1 0 + 0 + 2 0 + 5 + 0
0 + 0 − 3 0 + 0 + 6 0 + 0 + 0

  

  = 
5 3 14
1 2 5
4 5 0

   …………….. (2) 

From (1) and (2) we say that (AB)
T
 = 𝐵𝑇𝐴𝑇 

 

4.5. Determinant of a matrix 

Determinant of a square matrix A may be denoted by det A or |A| or 

∆.Determinant of a square matrix A of order 1.ie.,A=[a] 

  Det A=|A|=a 

Determinant of a 2×2 matrix(i.e., of order 2) 

  A= 
𝑎11 𝑎12

𝑎21 𝑎22
  

  |A|=a11a22-a21a12 

 

Minor and co-factor 

 Let A=[aij]m×n be a matrix of order mxn. 

The minor of an element aij is the determinant formed  by deleting the ith 

row and the jth column in which the element aij exists. 

 The minor of the element aij is denoted by Mij. 

 The minor of the element of a determinant of n is a determinant of 

order(n-1). 

 The cofactor of an element aij is denoted by Aij is defined as  

Aij=(-1)i+jMij. 
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Example: 

Let   A= 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

  

 A  = ∆ =  

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

  

The minor and co-factor of the elements a11, a22 and a32 of the determinant |A| 

are 

 M11= Minor of a11  = 
𝑎22 𝑎23

𝑎32 𝑎33
  

     =a22a33-a23a32 

A11 = Co-factor of a11 =(-1)1+1 M11 

    = + (a22a33-a23a32) 

M22= Minor of a22) = 
𝑎11 𝑎13

𝑎31 𝑎33
  

=a11a33-a13a31 

A22 = Co-factor of a22 = (-1)2+2 M22 

    =+(a11a33-a13a31) 

M32 = Minor of a32 = 
𝑎11 𝑎13

𝑎21 𝑎23
  

=a11a23-a13a21 

A32 = Co-factor of a32 =(-1)3+2 M32 

=-(a11a23-a13a21) 

 

Expansion of the Determinant 

 The determinant ∆ of a matrix A can be expressed as the sum of the 

products of elements of any row(or column) by their corresponding co-

factors. 
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∆=a11A11-a12A12+a13A13 

   = 𝑎11  
𝑎22 𝑎23

𝑎32 𝑎33
 − 𝑎12  

𝑎21 𝑎23

𝑎31 𝑎33
 + 𝑎13  

𝑎21 𝑎22

𝑎31 𝑎32
  

   = 𝑎11 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12 𝑎21𝑎33 − 𝑎23𝑎31 + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31) 

∆ =  (−1)i+j

3

j=1

 aijMij 

 

=  𝑎𝑖𝑗{(−1)𝑖+𝑗

3

𝑗=1

𝑀𝑖𝑗} 

=  3
j=1  aijAij 

= ai1Ai1 + ai2Ai2 + ai3Ai3 

for either i=1 or i=2 or i=3.  

i.e., the determinant(∆) is expanded along i
th
 row. 

Difference between a matrix and a Determinant 

A matrix is an arrangement of numbers in which the number of rows may 

not be equal to the number of columns. 

A matrix defines the representation without any fixed numerical value. 

However a determinant has a fixed value. 

Example 1. 

Find the determinant of matrix  
1 2 3
4 5 6
7 8 9

  

Solution : 

 Let A= 
1 2 3
4 5 6
7 8 9
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 |A|  =1(45-48)-2(36-42)+3(32-35) 

  =1(-3)-2(-6)+3(-3) 

  =-3+12-9 

  =0 

∴ A is a singular matrix. 

 

Example 2. 

Find the determinant of the matrix  
2 −1 1

−15 6 −5
5 −2 2

  

Solution : 

Let A= 
2 −1 1

−15 6 −5
5 −2 2

  

|A| =2(12-10)+1(-30+25)+1(30-30) 

=2(2)+1(-5) 

=4-5 

=-1≠0 

∴ A is a non − singular matrix. 

 

 

Example:  

 Prove that A
3
-4A

2
-3A+11I=0 where A is given by  

 𝐴 =  
1 3 2
2 0 −1
1 2 3

  

And I is the unit matrix of order 3. 
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Solution: 

 𝐴 =  
1 3 2
2 0 −1
1 2 3

  

 𝐴2 =  
1 3 2
2 0 −1
1 2 3

  
1 3 2
2 0 −1
1 2 3

  

  = 
1 + 6 + 2 3 + 0 + 4 2 − 3 + 6
2 + 0 − 1 6 + 0 − 2 4 + 0 − 3
1 + 4 + 3 3 + 0 + 6 2 − 2 + 9

  

  = 
9 7 5
1 4 1
8 9 9

  

 

A
3
=A

2
x A = 

9 7 5
1 4 1
8 9 9

  
1 3 2
2 0 −1
1 2 3

  

= 
9 + 14 + 5 27 + 0 + 10 18 − 7 + 15
1 + 8 + 1 3 + 0 + 2 2 − 4 + 3

8 + 18 + 9 24 + 0 + 18 16 − 9 + 27
  

= 
28 37 26
10 5 1
35 42 34

  

A
3
-4A

2
-3A+11I 

=  
28 37 26
10 5 1
35 42 34

  – 4  
9 7 5
1 4 1
8 9 9

  – 3  
1 3 2
2 0 −1
1 2 3

  + 11  
1 0 0
0 1 0
0 0 1

  

=  
28 37 26
10 5 1
35 42 34

 -  
36 28 20
4 16 4

32 36 36
 −  

3 9 6
6 0 −3
3 6 9

 +  
11 0 0
0 11 0
0 0 11

  

=  
28 − 36 − 3 + 11 37 − 28 − 9 + 0 26 − 20 − 6 +  0

10 − 4 − 6 +  0 5 − 16 −  0 + 11 1 − 4 + 3 +  0
35 − 32 − 3 +  0 42 − 36 − 6 +  0 34 − 36 − 9 + 11
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= 
0 0 0
0 0 0
0 0 0

  

=0 

Hence A
3
-4A

2
-3A+11 I = 0 

 

Example  : 

 Show that the matrix A= 
2 3
1 2

  satisfies the equation A
2
-4A+I=0 and hence 

find A
-1

. 

Solution: 

 A= 
2 3
1 2

  

 A
2
=A.A= 

2 3
1 2

  
2 3
1 2

  

  =  
4 + 3 6 + 6
2 + 2 3 + 4

  

  = 
7 12
4 7

  

- 4A=- 4  
2 3
1 2

  

-4A= 
−8 −12
−4 −8

  

A
2
-4A+I = 

7 12
4 7

  +  
−8 −12
−4 −8

  +  
1 0
0 1

  

  =  
7 − 8 + 1 12 − 12 + 0
4 − 4 + 0 7 − 8 + 1

  

  =  
0 0
0 0

  

Hence A
2
- 4A+I = 0 

A
2
-4A=-I 

A×A-4×A=-I 
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Post multiplying  by A
-1

,  we get 

A×A×A
-1

-4×A× A
-1

=-I A
-1 

A×I-4I= - A
-1 

A-4I= - A
-1 

 A
-1

 = -A+4I 

= − 
2 3
1 2

 + 4  
1 0
0 1

  

= 
−2 −3
−1 −2

 +  
4 0
0 4

  

=  
−2 + 4 −3 + 0
−1 + 0 −2 + 4

  

=  
2 −3

−1 2
  

∴ A-1
= 

2 −3
−1 2

  

 

 

4.6. Typical Square Matrices 

 

1. Orthogonal Matrix 

A square matrix A is said to be orthogonal if AA
T
 = A

T
A = I 

 

Note : 

(i) A
T
 is an orthogonal matrix. 

(ii) |A| = + 1. 

 

2. Unitary Matrix 

A square matrix A is said to be a unitary matrix if AA
*
= A

*
A = I. 

 

Note : 

 If A is a unitary matrix, then A
T
 and A

-1
 are unitary matrices. 
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3. Involutory  Matrix 

A square matrix A is calledan involutory matrixif A
2  

 = I. 

 

4. Idempotent Matrix 

A square matrix A is known as Idempotent if  A
2
 = A. 

 

5. Nilpotent Matrix 

A square matrix A is known as a nilpotent matrix if  A
n
 = 0 for some 

least positive integer n. 

 Integer n is called the index or order of  the nilpotent matrix A. 

 

Example: 

Show that  
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

  is orthogonal. Determine the value of |A|. 

Solution: 

 Let 𝐴 =  
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

  

 𝐴𝑇 =  
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

  

 AA
T
=  

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
  

𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
  

 = 
𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 0 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

0 1 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + 0 + 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃

  

 = 
1 0 0
0 1 0
0 0 1

  

 =I 

 AA
T
=I 
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 ∴ A is an orthogonal matrix. 

|A|= 
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

  

 = 1  
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
  

 = 𝑐𝑜𝑠2𝜃 −  −𝑠𝑖𝑛2𝜃  

 = 𝑐𝑜𝑠2𝜃 +  𝑠𝑖𝑛2𝜃  

 =1 

∴  |𝐴| = 1 

Example: 

Show that the matrix A= 
−5 −8 0
3 5 0
1 2 −1

  is involutory. 

Solution : 

 A= 
−5 −8 0
3 5 0
1 2 −1

  

 A
2
=A.A= 

−5 −8 0
3 5 0
1 2 −1

  
−5 −8 0
3 5 0
1 2 −1

  

  = 
25 − 24 + 0 40 − 40 + 0 0 − 0 − 0

−15 + 15 + 0 −24 + 25 + 0 0 + 0 − 0
−5 + 6 − 1 −8 + 10 − 2 0 + 0 + 1

  

  = 
1 0 0
0 1 0
0 0 1

  

  A
2
=I 

  ∴ A is aninvolutorymatrix. 
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Example  : 

Show that the matrix A= 
2 −2 −4

−1 3 4
1 −2 −3

  is Idempotent. 

Solution: 

A= 
2 −2 −4

−1 3 4
1 −2 −3

  

A
2
 = A.A= 

2 −2 −4
−1 3 4
1 −2 −3

 ∗  
2 −2 −4

−1 3 4
1 −2 −3

  

= 
4 + 2 − 4 −4 − 6 + 8 −8 − 8 + 12

−2 − 3 + 4 2 + 9 − 8 4 + 12 − 12
2 + 2 − 3 −2 − 6 + 6 −4 − 8 + 9

  

                =  
2 −2 −4

−1 3 4
1 −2 −3

  

 =  A 

A
2  

 = A 

   ∴ A is an Idempotent matrix. 

 

 

4.7. ADJOINT AND INVERSE OF A MATRIX 

 To describe adjoint and inverse of a matrix, the following definitions are 

necessary. 

1. Singular and Non-singular matrix: 

 A matrix A=[aij]n×n is said to be non-singular if |𝐴| ≠ 0. 

A matrix A=[aij]n×n is said to be singular if  |A|=0. 
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Example:  

Let A =  
2 2
3 3

  

|A| =  
2 2
3 3

   = 0 

Hence, A is  a singular matrix. 

 

Let A =  
2 1
3 3

  

|A| =  
2 1
3 3

 = 6 – 3 = 3 ≠ 0 

Hence, A is  a non-singular matrix. 

 

2. Adjoint of a Square Matrix 

 adj A = transpose of the cofactor matrix 

Properties of Adjoint of a matrix 

1.A(adj A)=|A|I=adj(A) A, if |A|≠0 

2.A  
 𝑎𝑑𝑗  𝐴 

 𝐴 
 = 𝐼 =  

 𝑎𝑑𝑗  𝐴 

 𝐴 
 A, 𝑖𝑓𝑓  |A| ≠0 

3. adj(AB) = (adj A) (adj B), iff|𝐴| ≠ 0, |𝐵| ≠ 0 

 

3. Inverse of a Matrix 

 If for a square matrix A, there exists another square matrix B such that  

AB = BA = I, then B is called the inverse of A and it is denoted by A
-1

. 
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 A−1 =
 𝑎𝑑𝑗  A 

 A 
  , |A| ≠ 0. 

where adjA=transpose of the co-factor matrix. 

Note : 

1. A A−1 = A−1 A = I 

2. Rectangular matrices cannot have an inverse matrix. 

 

Example: 

Find the adjoint of  
4 2

−1 3
  

Solution: 

 Let A= 
4 2

−1 3
  

A11 = 3 

A12 = - (-1)=1 

A21 = -2 

A22 = 4 

Cofactor matrix = 
𝐴11 𝐴12

𝐴21 𝐴22
  

= 
3 1

−2 4
  

adj A =transpose of cofactor matrix 

= 
𝐴11 𝐴21

𝐴12 𝐴22
  

= 
3 −2
1 4

  

 

Example  

Find the adjoint of the matrix 
1 2 3
2 −4 5
6 1 0
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Solution: 

 Let A =  
1 2 3
2 −4 5
6 1 0

  

Cofactors of  elements are given by  

  𝐴11 =  
−4 5
1 0

 = 0 − 5 = −5 

  𝐴12 = −  
2 5
6 0

 = − 0 − 30 = 30 

  𝐴13 =  
2 −4
6 1

 = 2 −  −24 = 26 

  𝐴21 = −  
2 3
1 0

 = − 0 − 3 = 3 

  𝐴22 =  
1 3
6 0

 =  0 − 18 = −18 

  𝐴23 = −  
1 2
6 1

 = − 1 − 12 = − −11 = 11 

  𝐴31 =  
2 3

−4 5
 = 10 − (— 12) = 10 + 12 = 22 

  𝐴32 = −  
1 3
2 5

 = − 5 − 6 = − −1 = 1 

  𝐴33 =  
1 2
2 −4

 = −4 − 4 = −8 

Cofactor Matrix  =  

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

  

   =  
−5 30 26
3 −18 11

22 1 −8
  

adj A=transpose of cofactor matrix  

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33
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 = 

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

  

 = 
−5 3 22
30 −18 1
26 11 −8

  

 

Example :Find the adjoint of the matrix  
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
  

Solution : 

 Let A= 
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
  

Cofactor of the elements are 

𝐴11 =  
𝑐𝑜𝑠𝛼 0

0 1
 = cos 𝛼 

𝐴12 = − 
𝑠𝑖𝑛 𝛼 0

0 1
 = −sin 𝛼 

𝐴13 =  
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

0 0
 = 0 

𝐴21 = −  
−𝑠𝑖𝑛 𝛼 0

0 1
 = −(−sin 𝛼) = 𝑠𝑖𝑛𝛼 

𝐴22 =  
𝑐𝑜𝑠 𝛼 0

0 1
 = cos 𝛼 

𝐴23 = −   
𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛𝛼

0 0
 = 0 

𝐴31 =  
−𝑠𝑖𝑛 𝛼 0
𝑐𝑜𝑠 𝛼 0

 = 0 

𝐴32 = −  
𝑐𝑜𝑠 𝛼 0
sin 𝛼 0

 = 0 

𝐴33 =  
𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

 = 𝑐𝑜𝑠2𝛼 + 𝑠𝑖𝑛2𝛼 =  1 
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Cofactor matrix Aij= 
𝑐𝑜𝑠𝛼 − 𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
  

AdjA =(Aij)
T 

= = 
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼 0

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 1

  

 

Example: 

If A= 
2 3
4 8

  verify that A(adj A)=(adj A)A=det(A)I 

Solution: 

Let A= 
2 3
4 8

  

|A| = 
2 3
4 8

  

= 16-12 

  = 4 

|A|=4 

A11 = 8 

A12 = - 4 

A21 = -3 

A22 = 2 

Cofactor matrix =  
8 −4

−3 2
 A 

adj A = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑜𝑓 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 

=  
8 −3

−4 2
  

A x (adj A)= 
2 3
4 8

  
8 −3

−4 2
  

=  
16 − 12 −6 + 6
32 − 32 −12 + 16
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= 
4 0
0 4

  

= 4  
1 0
0 1

  

= 4 I 

(adj A) x A = 
8 −3

−4 2
  

2 3
4 8

  

                         =  
16 − 12 24 − 24
−8 + 8 −12 + 16

  

                          =  
4 0
0 4

  

                         = 4  
1 0
0 1

  

  = 4 I 

∴A(adj A)=adj A(A)= (detA) I 

Hence it proved 

 

Example : 

Find the inverse of the matrix 
2 1
0 1

  

Solution : 

Let A =  
2 1
0 1

  

|A| = 
2 1
0 1

  

= 2 – 0 

= 2 

|A|=2 

|A|≠0 

Hence A is a non-singular matrix. 
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∴  A−1 exists. 

Cofactors of the elements of A are 

 

A11  = 1 

A12  = 0 

A21  = - 1 

A22  = 2 

Cofactor matrix Aij =  
1 0

−1 2
  

adj A= (Aij)
T
 

adj A= 
1 −1
0 2

  

𝐴−1 =
1

 𝐴 
𝑎𝑑𝑗 𝐴 

 =
1

2
 

1 −1
0 2

  

A
-1

= 
1

2
−

1

2

0 1
  

 

 

Example : 

Find the inverse of the matrix  
1 1 3
1 3 −3

−2 −4 −4
  

Solution: 

 Let A= 
1 1 3
1 3 −3

−2 −4 −4
  

 |A| =1(-12-12)-1(-4-6)+3(-4+6) 
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  =1(-24)-1(-10)+3(2) 

  =-24+10+6 

  =-8 

|A|≠0 

∴ A is a non −  singular matrix. 

∴ A-1 
exists. 

Cofactors of elements of |A| are 

A11= 
3 −3

−4 −4
 = −12 − 12 = −24 

A12= − 
1 −3

−2 −4
 = −(−4 − 6) = 10 

A13 = 
1 3

−2 −4
 = -4 + 6 = 2 

A21 = −  
1 3

−4 −4
 = - (-4+12) = - 8 

A22 = 
1 3

−2 −4
 = -4 + 6 = 2 

A23 = −  
1 1

−2 −4
 = - (-4 + 2) = 2 

A31 =  
1 3
3 −3

  = -3 – 9 = - 12 

A32 = −   
1 3
1 −3

 = -(-3 - 3) = 6 

A33 =  
1 1
1 3

 =  3 – 2 = 1 

Cofactor Matrix  Aij =  

A11 A12 A13

A21 A22 A23

A31 A32 A33

  

    =  
−24 10 2
−8 2 2
−12 6 2

    

adj A=(Aij)
T 
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=   
−24 −8 −12
10 2 6
2 2 2

  

A−1 =
1

 A 
. adj A 

=
1

−8
 
−24 −8 −12
10 2 6
2 2 2

  

= 

3 1 3/2
−5/4 −1/4 −3/4
−1/4 −1/4 −1/4

  

 

Example : 

Find the inverse of the matrix  A= 
1 −2 2
2 −3 6
1 1 7

  

Solution : 

 Let A= 
1 −2 2
2 −3 6
1 1 7

  

 A     = 1 −21 − 6 + 2 14 − 6 + 2 2 + 3  

=1(-27)+2(8)+2(5) 

=-27+16+10 

=-1 

|A| ≠ 0 

∴ A is a non − singular matrix. 

∴  A−1 exists. 

Cofactors of elements of |A| are 

A11= 
−3 6
1 7

 = (-21 - 6) = - 27 
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A12 = −  
2 6
1 7

 = - (14 - 6) = - 8 

A13 = 
2 −3
1 1

 = 2 + 3 = 5 

A21 = −  
−2 2
1 7

 = - (- 14 - 2 ) = 16 

A22 = 
1 2
1 7

 = 7 – 2 = 5 

A23 = −  
1 −2
1 1

 = - (1 + 2) = - 3 

A31 =  
−2 2
−3 6

  = (- 12 + 6) = - 6 

A32 = −   
1 2
2 6

 = - (6 - 4) = - 2 

A33 =  
1 −2
2 −3

 = (- 3 + 4) = 1 

Cofactor Matrix  Aij =  

A11 A12 A13

A21 A22 A23

A31 A32 A33

  

    =  
−27 −8 5
16 5 −3
−6 −2 1

  

adj A = (Aij)
T 

           =   
−27 16 −6
−8 5 −2
5 −3 1

  

𝐴−1     =
1

 𝐴 
. 𝑎𝑑𝑗 𝐴 

=
1

−1
 
−27 16 −6
−8 5 −2
5 −3 1

  

= 
27 −16 6
8 −5 2

−5 3 1
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Example : 

Find the inverse of the matrix  
1 3 −4 
1 5 −1
3 13 −6

  

Solution : 

Let B= 
1 3 −4 
1 5 −1
3 13 −6

  

|B|=1(-30+13)-3(-6+3)-4(13-15) 

=1(-17)-3(-3)-4(-2) 

=-17+9+8 

|B|=0. 

B is a singular matrix 

∴ B-1 does not exists. 

 

Properties of inverse of a matrix 

1. The necessary and sufficient condition for a square matrix A to possers the 

inverse is that A is to be non-singular  

 

i.e 𝐴 ≠ 0 

2. The inverse of a matrix, if exists is unique. 

3. If A and B are two non-singular matrices of the same order, then (AB)
-1

=B
-1

A
-1

. 

i.e, inverse of a product of two matrices is the product of their inverses in the 

reverse order.  

4. If A is non – singular, then 

(a)  𝐴−1 −1= A    
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(b)  𝐴−1 𝑇=  𝐴𝑇 −1  

 

5. A
-1

 is an orthogonal matrix. 
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UNIT V 

GRAPH THEORY 

 
 
5.1 GRAPHS AND BASIC TERMINOLOGIES 
 

A graph is a mathematical concept which can be used to model many 

concepts from –the real world. 

A graph consists of a pair of sets, represented as G = (V, E), where V is a 

non-empty set of vertices (also called nodes) and E is a set of edges 

(sometimes called arcs).  

An edge can be represented as a pair of nodes (u,v) indicating an edge 

from node u to node v. 

Two vertices/nodes x and y of G are connected if there is an edge xy 

between them, and these vertices are then called adjacent or neighbour 

vertices/nodes. Here, the nodes x and y are called the endpoints of the edge. 

x y 

         In a graph G, a node which is not adjacent to any other node is called 

an isolated node. 

A graph is finite if it has a finite number of vertices and a finite number of 

edges, otherwise it is infinite. 

If  G is finite, G(V)denotes the number of vertices in G and it is called the 

order of G. 

Similarly, E(G) denotes the number of edges in G and it is called the size of G.  

The graph shown in figure 5.1has four vertices a,b, c and d. 

(a,b) is a pair of vertices which are connected, and this connectivity represents an 

edge between them. Now a andb are the end points of the edge (a, b). 
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Neighbours of vertex a in this graph are b and c as there are edges from a to 

b and a to c. 

Vertex d is the isolated vertex, as it is not adjacent to any other vertices.  

It is an example of finite graph and its 

Order of G is 4 as V = {a, b, c, d}. 

       d   

 d                d 

 

 

 Figure 5.1 A graph with isolated vertex 

1. Undirected and Directed Graphs 

 

Graphs may be directed or undirected. 

A graph is directed (or digraph) when direction of edge from one vertex to 

another is defined, otherwise it is an undirected graph. 

Undirected edge between vertices u and v is expressed as (u, v). 

Directed edge between vertices u and v is expressed as <u,v> 

A simple directed graph is shown in Figure 5.2 

    

    

 

Figure 5.2 Simple Directed Graph 
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2. Weighted Graph 

 A weighted graph associates a value (weight) with every edge in the 

graph.  

In other words, when a weight (may be cost, distance, etc) is associated 

with each edge of a graph, then it is called as weighted graph, otherwise 

unweighted graph. 

    Figure 5.3  

3. Self-Edge or self –Loop 

 In graph theory, a loop (also called a self-loop or a "buckle") is 

an edge that connects a vertex to itself. A simple graph contains no loops. 

 A graph with self loop is shown Figure 5.4. 

  

  Figure 5.4 

4. Multiple or parallel Edges 

 If a pair of nodes is joined by more than one edge,  then such edges are 

called multiple or parallel edges.  

https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Simple_graph


 

109 
 

In undirected graph, two edges 𝑣𝑖 , 𝑣𝑗   𝑎𝑛𝑑  𝑣𝑝 = 𝑣𝑞  are parallel edges 

if𝑣𝑖 = 𝑣𝑝𝑎𝑛𝑑 𝑣𝑗 = 𝑣𝑞 . 

   

(a) Undirected graph with    (b) Directed graph with 

 parallel edges     parallel edges 

     Figure 5.5 

In the directed graph, the edges between vertices a and b parallel 

edges. The edge pair between the vertices b and c are not parallel edges, 

since the directions of the edge pair are opposite. 

5. Path in a Graph 

 A path in a graph is a sequence of vertices such that from each of its vertices 

there is an edge to the next vertex in the sequence. Clearly, vertices as well as 

edges may be repeated in a path. 

A path from u to w is a sequence of edges 

 𝑢, 𝑣1 ,  𝑣1, 𝑣2 … . ,  𝑣𝑘−1 , 𝑤 connecting u with w.  

A path may be termed as walk also.  

The number of edges in a path is termed as its length. 

For example,(a, b), (b,b), (b, d), (d, c), (c, b), (b, d)  is one path of the graph 

as shown in Figure 5.4. and its length is 6. 

A path with no repeated vertex is called a simple path. 

In Figure 5.4. (a, b), (b, d), (d, c) is simple path. 

A path with no repeated edge is termed as trail. 
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In a closed trail, the first and the last vertices are same. 

A closed path is a path that starts and ends at the same point, otherwise the 

path is open. Edge repetition is allowed on the closed path. 

In Figure 5.4. (a, b), (b, d), (d, c),(c,a)  is a closed  path. 

A Cycle (circuit/tour) is a closed path of non-zero length that does not  

contain any repeated edges. Vertices other than the end (i.e., start) vertex may 

also be repeated.  

In Figure 5.4, (a, b), (b, b), (b, d), (d, c),(c, a)  is a cycle.  

A simple cycle is a cycle that does not have any repeated vertex except the 

first and the last vertex. (a, b),(b, d), (d, c),(c, a)  is an example of simple cycle. 

A graph without cycles is called acyclic. 

 A tree is an acyclic and connected graph. 

A forest is a set of trees.  

 

6. Connected Graph 

A graph is called connected if and only if for any pair of nodes u, v, there is 

at least one path between u and v. Otherwise, it is disconnectecd. 

Clearly, the graph in Figure 5.4 is a connected undirected graph, whereas 

the graph given in Figure 5.1 is disconnected. 

7. Types of Connectivity in Graphs 

A connected graph must have at least two vertices. 

A graph is strongly connected if and only if every pair of vertices in the 

graph are reachable from each other. i.e., if there are paths in both directions 

between any two vertices.  

Otherwise, the graph is of weakly or unilaterally connected. 

The graph in Figure 5.6(a) is an unilaterally connected graph, as it has a path 

from a to c but no path exists from c to a, and so on. 

A graph is strictly weakly connected if it is not unilaterally connected.  

Thus, a strictly weakly connected graph may have many sources and sinks 

(destinations). The graph given in Figure 5.6(b) is an example of strictly weakly 

connected graph. 
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(a)                                                    (b) 

  Figure 5.6 

8. Simple Graph, Multi – Graph, and Pseudo-Graph 

 A directed or undirected graph which has neither self-loops nor parallel 

edges is called simple graph. 

However, cycle(s) is (are) allowed in a simple graph.  

Further, a simple graph may contain isolated vertex also. 

 The graph as shown in Figure 5.7(a) is a simple connected graph, since it 

has no self loop and parallel edges.  

Further, the graph in Figure 5.6 is a simple directed graph, as it has no self-loop 

or parallel edges. On the other graph in Figure 5.1 is a simple disconnected graph. 

 

  

(a)                               (b)                                        (c) 

Figure 5.7 
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 Any graph (directed or undirected) which contains some parallel edges is 

called a multigraph. In multi-graph, no self-loop is allowed but cycle may be 

present.  

Figure 5.7 (b) is an example of multi-graph, since it has parallel edges but no 

self loop. 

A directed or undirected graph in which self-loop(s) and parallel edge(s) 

are allowed is called a pseudo-graph. Figure 5.7 (c) is an example of pseudo-

graph. 

 

9.Degree of vertex 

 The degree of a vertex of an undirected graph is the number of edges 

incident on itcounting self loop twice. The degree of a vertex G is denoted by 

degG(v). 

For example In the undirected graph in Figure 5.4, the degree of a [i.e., degG(a) 

is 2, degree of b [i.e., degG(b)] is 5 (since there is a self-loop at b), degree of c 

is 3 and degree of d is 2.  

In directed graph G, we consider two types of degrees of vertices: (a) in-

degree and (b) out-degree. 

The in-degree of a vertex v of G, denoted by degG-(v), is number of edges 

moving into that vertex. 

The out-degree of v, denoted by degG
+
(v)is the the number of edges 

moving out from that vertex. 

The sum of the in-degree and the out-degree of a vertex is called the total 

degree of that vertex. 

For example: 

In the directed graph in figure 5.6(a),the in-degree of 1,degG-(1) is 0(zero) 

and but  its out-degree, degG
+
(v) is 1. 

Hence the total degree of 1 is degG-(1) + degG
+
(1) = 2. 

A vertex with zero in-degree is called a source vertex and a vertex with 

zero out-degree is called sink vertex.  

A vertex of degree 0(zero) is called isolated vertex.  

A vertex is pendant vertex if and only if its degree is 1. 
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The vertex d in Figure 5.1 is an isolated vertex, as its degree is zero, 

whereas the vertex 1 of the graph in Figure 5.7(c) is a pendant vertex (because 

its degree 1). 

 

10. Degree Sequence of a Graph 

Let G be a graph with vertices v1, v2,v3, …vn. The monotonically increasing 

sequence (d1, d2, d3, …dn), where di = degG(vi) is called the degree sequence of the 

graph G. 

The degree sequence of the graph in figure 5.4 is (2,2,3,5). 

Note : 

The degree of a graph G is the maximum of the degrees of all nodes in G. 

If the number of edges m = O(n) (where n is the number nodes in the 

graph), then the graph is said to be sparse. 

If m is larger than linear order of n, i.e., m = 0(n
2
) (but as long as there are 

no multiple edges), then the graph is called dense. 

 

Theorem 5.1 

 A simple graph with n ≥ 2vertices contains atleast two vertices of the 

same degree. 

Proof : 

 Let G be a simple graph with n ≥ 2vertices. 

Since G is a simple graph ,it has no loop and parallel edges. 

We know that, the degree of a vertex of a simple graph G on n vertices cannot 

exceed n-1. 

So, degree of each vertex is ≤ 1. 

Assume  that all the vertices of G have distinct degrees. 

Thus, the degrees, 0, 1, 2, 3,….,n-1,are possible for n vertices of G. 

Let u be the vertex with degree 0.Clearly,u is the isolated vertex. 

Let v be the vertex with degree n-1,then v must have n-1 adjacent 

vertices. 
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In fact, it is possible if the vertex v is adjacent to each vertex of the graph 

G, it is also adjacent to u. But it is assumed that u is an isolated vertex. i.e., it is 

not adjacent with any vertex of G. 

Hence ,either u is not an isolated vertex or the degree of v is not n-1. 

So, contradiction occurs on the assumption of different distinct degrees 

of vertices of G. 

Thus, the contradiction proves that a simple graph contains at least two 

vertices of same degree. 

 

Note : 

The above theorem can be clearly understood by taking some examples. 

(i) Suppose, the simple graph G has two vertices v1 and v2. 

Since it is a simple graph, G has no loop or parallel edges. 

First, consider that both the vertices are isolated. 

Hence,𝑑𝑒𝑔𝐺 𝑣1 = 𝑑𝑒𝑔𝐺 𝑣2 = 0. 

So, both the vertices have same degree 0. 

Second, suppose that they are adjacent to each other(but no parallel 

edges). 

Hence,𝑑𝑒𝑔𝐺 𝑣1 = 𝑑𝑒𝑔𝐺 𝑣2 = 1. 

So, both the vertices have same degree 1. 

 

(ii) Suppose, the simple graph G has three vertices v1 , v2 and v3. 

The graph G is a simple graph, so it has no loop or parallel edges. 

First, consider that all the vertices are isolated. 

Hence,𝑑𝑒𝑔𝐺 𝑣1 = 𝑑𝑒𝑔𝐺 𝑣2 = 𝑑𝑒𝑔𝐺 𝑣3 = 0. 

So, at least two vertices (here all the vertices)have same degree 0. 

Second, suppose, one vertex is isolated and the remaining two are 

adjacent to each other. 

Then, degree sequence is(0,1,1) and it means at least two vertices out of 

three have same degree. 

Third, suppose G has no isolated vertices out of three. 

Then, degree sequence is (1,1,2) and it means at least two vertices out of 

three have same degree. 

Hence, it is true for a simple graph with any number of vertices. 

The above theorem is true for both directed as well as undirected graphs. 
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Theorem 5.2(The Handshaking theorem) 

If G=(V,E) is a graph with e number of edges, then 

    𝑑𝑒𝑔𝐺 𝑣  𝑣∈𝑉 = 2𝑒 

i.e., the sum of degrees of the vertices of G is always even. 

For directed graph, 

 𝑑𝑒𝑔𝐺 𝑣  

𝑣∈𝑉

=  𝑑𝑒𝑔− 𝑣 

𝑣∈𝑉

+  𝑑𝑒𝑔+ 𝑣 

𝑣∈𝑉

 

i.e., the sum of degrees of the vertices is the sum of the in-degrees and the out-

degrees of the vertices. 

Proof  : 

Let G be an undirected graph.  

The degree of a vertex of G is the number of edges incident with that 

vertex. 

Now, every edge is incident with exactly two vertices. 

Hence, each edge gets counted twice, one at each end. 

Thus, the sum of the degrees equals twice the number of edges. 

 Let G be a directed graph. 

Then in-degree and out-degree of each vertex of G are considered. 

However, the sum of the in-degree and out-degree of a vertex is the total 

degree of that vertex. 

Further, every edge is incident with exactly two vertices. So, here also, 

each edge gets counted twice: one as in-degree and the other as out-degree. 

Thus, the sum of the degrees(in-degrees and out-degrees) of all the 

vertices equals twice the number of edges. 
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Note:  

(i) The name of this theorem is handshaking because if several people 

shake hands, the total number of hands involved must be even(since 

for every handshaking, two hands are required). 

(ii) This theorem applies even if multiple edges and self-loops are present 

in graph. 

(iii) The theorem it is true for both connected and disconnected graphs. 

(iv) If sum of degrees of the vertices of a graph is given, then the number 

of edges present in that graph can be computed. But the reverse is not 

possible. 

 

Corollary : 

In a graph, total number of odd-degree vertices is even. 

Proof : 

Let G=(V,E) be a graph, where K1 and K2 are the set of vertices with odd 

degree and even degree, respectively. 

Now, 𝑑𝑒𝑔𝐺(𝑣𝑖)
𝑣𝑖∈𝑉 =  𝑑𝑒𝑔𝐺 𝑣𝑖 𝑣𝑖∈𝐾1

+  𝑑𝑒𝑔𝐺 𝑣𝑖 𝑣𝑖∈𝐾2
 

2𝑒 =  𝑑𝑒𝑔𝐺 𝑣𝑖 

𝑣𝑖∈𝐾1

+  𝑑𝑒𝑔𝐺 𝑣𝑖 

𝑣𝑖∈𝐾2

 

[Since sum of the degree of vertices is twice the number of edges(e), and it is 

always even.] 

Further, sum of the even-degree vertices is even. 

i.e.,  𝑑𝑒𝑔𝐺 𝑣𝑖 𝑣𝑖∈𝐾2
 is even. 

Clearly, 

 𝑑𝑒𝑔𝐺 𝑣𝑖 𝑣𝑖∈𝐾1
is even. 

i.e., the sum of the odd-degree vertices is also even, 
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Again, 𝑑𝑒𝑔𝐺 𝑣𝑖 𝑣𝑖∈𝐾1
 is even only if number of vertices of K1 is even. 

Hence, the number of odd degree vertices is even. 

[For example, suppose three vertices contain odd degrees 

1,3,5respectively.Clearly,there sum may not be even, since number of vertices 

is 3 which is an odd number.] 

 

Note: 

The sum of two numbers(say,n1 and n2)gives even if both of n1 and n2 are either 

odd or even. i.e., odd+odd=even, even+even=even. 

 

Theorem 5.3 

If G=(V,E) be a directed graph with e number of edges, then 

  𝑑𝑒𝑔− 𝑣 𝑣∈𝑉 =   𝑑𝑒𝑔+ 𝑣 𝑣∈𝑉  

i.e., the sum of the out-degrees of the vertices of G equals the sum of the in-

degree of the vertices, which equals the number of edges in G. 

Proof : 

Any directed edge of G contributes 1 out-degree and 1 in-degree. Also, a 

self-loop contributes two degrees(1 out-degree and 1 in-degree). 

Hence, the theorem is proved. 

 

Example: 

In the directed graph in Figure 5.6 (a),the in-degree  of1, 𝑑𝑒𝑔𝐺− 1  is 1 

and its out-degree 𝑑𝑒𝑔𝐺+ 1  is 1. 

Hence, the total degree of 1 is 2. 

    𝑑𝑒𝑔𝐺 1 = 𝑑𝑒 𝑔𝐺− 1 + 𝑑𝑒 𝑔𝐺+ 1 = 1 + 1 = 2, 

𝑑𝑒𝑔𝐺 2 = 𝑑𝑒𝑔𝐺 −  2 + 𝑑𝑒 𝑔𝐺+ 2 = 1 + 1 = 2, 

                            𝑑𝑒𝑔𝐺 3 = 𝑑𝑒 𝑔𝐺− 3 + 𝑑𝑒 𝑔𝐺+ 3 = 1 + 1 = 2. 
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Hence, 𝑑𝑒 𝑔𝐺− 1 + 𝑑𝑒 𝑔𝐺− 2 + 𝑑𝑒 𝑔𝐺− 3 = 1 + 1 + 1 = 3 =

𝑒(number of edges) and  

𝑑𝑒 𝑔𝐺+ 1 + 𝑑𝑒 𝑔𝐺+ 2 + 𝑑𝑒 𝑔𝐺+ 3 =1+1+1=3=e(number of edges). 

 

Example 5.1: 

 Show that the degree of a vertex of a simple graph G on n vertices cannot 

exceed n-1. 

Solution  : 

Let v be a vertex of G. 

Since G is simple, no multiple edges or self-loops are allowed in G. 

Thus v can be adjacent to at most all the remaining n-1 vertices of G. 

Hence, v may have maximum degree n-1 in G. 

If the degree of v becomes more than(n-1),then there must have self-

loops or parallel edges in the graph, which is not allowed in simple graph. 

So, the degree of a vertex 𝑣 ∈ 𝑉(𝐺) in a simple graph lies in the range 

0 ≤  𝑑𝑒𝑔𝐺 𝑣 ≤ 𝑛 − 1. 

In particular, it is 0 if the vertex is isolated. 

 

Note : 

The above inequality is true for both directed and undirected simple graphs. 

 

Example 5.2 : 

Show that the maximum number of edges in a simple undirected graph 

with n vertices is n(n-1)/2. 

Solution : 

By the handshaking theorem, we know 

   𝑑𝑒𝑔𝐺 𝑣  𝑣∈𝑉 = 2𝑒 
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where e is the number of edges with n vertices in the graph G. 

This implies 

𝑑 𝑣1 + 𝑑 𝑣2 + 𝑑 𝑣3 + ⋯ + 𝑑 𝑣𝑛 = 2𝑒 ……. (5.1) 

Since maximum degree of each vertex in a simple graph can be (n-1). 

Therefore, Eq. (5.1) can be written as  

(n-1)+(n-1)+…+ up to n terms(considering maximum degree for each vertex) 

=n(n-1) 

=2e 

Hence, 

e(maximum number of edges in a simple graph with n vertices)=n(n-1)/2. 

 

Note : 

Maximum number of edges in a simple directed graph G is 2n(n-1)/2 

=n(n-1),since in a simple directed graph, edges with opposite direction between 

any pair of vertices are allowed. 

 

Example 5.3 : 

For a simple graph with n vertices, what is the minimum number of edges 

required to ensure that the graph is connected? 

 

Solution : 

Let S ϲ V be a set of vertices for which each vertex in S has degree 0. 

If S has just one vertex(the minimum case of a disconnected graph),then(n-1) 

edges are possible between S and (V-S). 

Therefore, the maximum possible number of edges in a disconnected graph is  
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 n(n-1)/2-(n-1) =(n-1)[(n/2)-1] 

     = (n-1)(n-2)/2 

Clearly, the minimum number of edges in a connected graph is  

= 1+(n-1)(n-2)/2 

=[2 +(n
2
-3n+2)]/2. 

= (n
2
-3n+4)/2 

 

Note  :To check the existence of a graph when its degree sequence is given. 

1. If the sum of the degrees of the vertices of the graph is not even, then graph 

corresponding to the given degree sequence cannot be drawn (application of 

handshaking theorem). 

2. If the total number of odd degree vertices (counted from the given degree 

sequence) is odd, then graph corresponding to the given degree sequence cannot 

be drawn. 

Hence, for the existence of any graph G, the number of odd-degree vertices 

must be even, and this point can be applied only for confirmatory checking. i.e., 

it is not compulsory to consider. 

 Now, if both the above-mentioned conditions are false(i.e., when the sum 

of the degrees is even and the number of odd-degree vertices is also even, then 

it is certainly possible to draw one graph, but it may not be possible to draw a 

simple graph following the given degree sequence.  

For checking the existence of a simple graph, we must concentrate on its 

properties. Some examples on degree sequence are given below. 

 

Example 5.4 : 

Is there a simple graph corresponding to the following degree sequences? 
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(a) (1,1,2,3) 

(b) (2,2,4,4) 

Solution : 

(a) The total number of odd-degree vertices in a graph is even. 

The number of odd-degree vertices is 3. 

Hence, no graph corresponding to this degree sequence can be drawn. 

 

Sum of degrees=1+1+2+3=7, which is odd.  

By handshaking theorem, the sum of degrees of any simple graph 

must be even. 

Hence, no graph exists for this case. 

(b) The sum of the degree of the vertices is 12 which is even. 

Also, the number of the odd-degree vertices is 0 which is even.  

So, a graph can be drawn, using the given degree sequence. 

Now, let us check if any simple graph is possible to draw or not. 

The number of vertices is 4. 

However, the degree of any vertex in a  simple graph G on n vertices cannot 

exceed n-1, the degree of any vertex cannot be 4. 

Hence, no simple graph corresponding to the given degree sequence can be 

drawn. 

Example 5.5 : 

 Does there exist a simple graph with seven vertices having 

degrees(1,3,3,4,5,6,6)? 

Solution: 

The sum of the degrees of the vertices is 1+3+3+4+5+6+6=28 and it is an 

even number. 

Also, the number of odd-degree vertices is even. 
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So, the graph corresponding to the given degree sequence exists. 

 Now, let us check whether any simple graph exists or not. 

Assume that it exists. Here, two vertices out of seven have degree 

6.So,each of these two vertices is adjacent to the rest six vertices of the graph. 

Accordingly, the degree of each vertex should be at least 2. i.e., it may not be 

1.But in the degree sequence, no vertex with degree 2 is provided. Moreover, a 

vertex with degree 1 is given. 

 Therefore, we arrive at a contradiction in out assumption. Thus no simple 

graph, following the given degree sequence, can be drawn. 

 

Example 5.6 : 

 For the graph G as shown in figure 5.8, write the degree sequence of G. 

    

     Figure 5.8 

Hence, find the number of odd-degree vertices and the number of edges in the 

graph G. 

Solution: 

 The degree sequence is given as {3,3,3,2,2,1}. 

Hence, the number of the odd-degree vertices is 4,which is even as per the 

corollary of handshaking theorem. 

 Now, the sum of degrees of all vertices is 2e, where is the number of 

edges. So, we get 
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3+3+3+2+2+1=2e 

2e =14 

e= 7 

Hence, the number of edges in the given graph is 7and can be verified by 

counting. 

Example 5.7 : 

For each of the following degree sequences, determine if there exists a 

graph whose degree sequence is given. If possible draw the graph or explain why 

such a graph does not exist. 

i. (1, 1, 1, 1, 1) 

ii. (1, 1, 1, 1, 1, 1) 

Solution 

(i) The given degree sequence is (1, 1, 1, 1, 1). 

Sum of the degrees of the vertices =1 + 1 + 1 + 1 + 1 = 5 = odd number. 

 Hence, it is not possible to draw any graph corresponding to the degree 

sequence (1,1,1, 1,1). 

(ii)  The given degree sequence is (1, 1, 1, 1, 1, 1). 

Sum of degrees = 1 + 1 + 1 + 1 + 1 + 1= 6 = even number 

Therefore, e = number of edges = 6/2 = 3.  

Here, n (number of vertices in the graph) = 6.  

Also, number of odd-degree vertices is 6 and it is an even number.  

Hence, the graph corresponding to the given sequence (1,1,1,1,1,1) can be 

drawn. 

Example 5.8 : 

Let G be a simple graph with 12 edges. If G has 6 vertices of degree 3 and the 

rest of the vertices have degree less than 3, then find the (a) minimum number of 
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vertices and (b) maximum number of vertices. 

Solution: 

 Number of edges e = 12 

 Suppose the total number of vertices in G is p. 

Given that 6 vertices have degree 3.  

Hence, the sum of degrees =3 *6 = 18.  

The rest (p — 6) vertices have degree less than 3. i.e., their degree lies 

inclusively between 0 and 2. 

Here, to find the minimum number of vertices, (p — 6) vertices must have 

maximum degree [i.e., 2 ] 

Therefore, applying the handshaking theorem, we get 

18 + 2 𝑝 − 6 = 2𝑒 

18 + 2𝑝 − 12 = 24  

2𝑝 + 6 = 24 

2𝑝 = 18 

⇒ 𝑝 = 9 

Minimum number of vertices = 9 

 To calculate the maximum number of vertices, (p — 6) vertices must have 

maximum degree [i.e., 1]  

Sum of degrees = 18 +  𝑝 − 6 = 2𝑒 = 24  

𝑝 + 12 = 24 

⇒ 𝑝 = 12 

Maximum number of vertices = 12 

5.2 TYPES OF GRAPHS 

 Some important types of graphs are introduced here. These are often 

used in many applications. 
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5.2.1 Null Graph 

 A graph which contains only isolated nodes is called a null graph. i.e the 

set of edges in a null graph is empty. Null graph on n vertices in denoted by 

NnNull graph (N3) with 3 vertices is shown below 

      

 5.2.2 Complete Graph 

 A graph G is said to be complete if every vertex of G is connected with 

every other vertex of  G. i.e., every pair of distinct vertices contains exactly one 

edge. Complete graph on n vertices is denoted by Kn . 

Some complete graphK1,  K2,  K3, K 4, K5, K 6, K7are shown below. 
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                Figure 5.9 

A complete graph G is a simple graph and it may be directed as well as 

undirected. Any complete graph Kn with n vertices has exactly n(n — 1)/2 

edges. 

Directed graph K3 is shown in Figure 5.10.  

 

 

 Figure 5.10 

5.2.3 Regular Graph 

 A graph in which all the vertices are of same degree is called a regular 

graph. If the degree each vertex is r, then the graph is called a regular graph of 

degree r, and it is denoted byRr. A regular graph may be directed 

or undirected. When it is directed, then the degree of each vertex is computed as 

the sum of its in-degree and out- degree. 
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 A complete graph is a regular graph of degree n-1 or it is called (n-1) regular 

graph. Obviously, if a graph is null graph, then it is 0 regular (as degree of each 

vertex is 0) 

2-regular graph with 5 vertices is given in Figure 5.11 

    

                                           Figure 5.11 

Note: 

 If a graph G with n vertices is r-regular, then the number of edges of G is  

r * n/2.  

Since the graph has n vertices n vertices are r-regular, the sum of the degree 

of the vertices is n * r. Also, sum of degrees of a graph equals to twice the number 

of edges. Hence, the number of the edges of the regular graph with n vertices is r * 

n/2. 

Example 5.9 

 Find the number of edges of a 4-regular graph with 6 vertices. 

Solution : 

Here  n = 6 and r = 4.  

Number of edges  𝑒 = 𝑟 ∗
𝑛

2
= 4 ∗

6

2
= 12 

Example 5.10 

 

 Is it possible to draw a 3-regular graph with 5 vertices. 
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Solution : 

 Number of vertices n = 5 

r= 3 

Sum of the degrees of the vertices = 5 * 3 = 15, which is not divisible by 2. 

Therefore, it is not possible to draw a 3-regular with 5 vertices. 

 

Note :A graph with n vertices is r-regular if either r or n or both are even. 

 

Cycles 

 The cycle 𝐶𝑛  , 𝑛 ≥ 3, consists of n vertices and n edges so that the second 

endpoint of the last edge coincides with the staring vertex. 

A cycle with 6 vertices is shown below. 

     

 

5.2.4 Bipartite Graph 

  A graph G = (V, E) is a bipartite graph if the vertex set V can be 

partitioned into two disjoint subsets, say, V1 and V2such that every edge in E 

connects a vertex in V1to the vertex in V2.  

But no edge in G connects either of the two vertices in V1 or two vertices in V2.  
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(V1, V2) is called a bipartition of G. Some examples of bipartite graph are 

shown below. 

 

Example 5.11 

 Show that the graph C6 is bipartite. 

Solution: 

  

      

In this graph, the two distinct sets of vertices are shown in distinct colours. Hence, 

C6 is bipartite. 

 

Procedure to check whether a graph G is bipartite or not 

Step 1 Arbitrarily select a vertex from G and include it into set 1. 

Step 2 Consider the edges directly connected to that vertex and put the other end 

vertices of these edges into set 2. 
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Step 3 Now, pick up one vertex from set 1and consider the edges directly 

connected to that vertex, and put the other end vertices of these edges into 

set 2. 

Step 4 At each step, step 2 and step 3, check if there is any edge among the 

vertices of set 1 or set 2. 

If so, construction of sets is stopped and the given graph is not bipartite 

graph, then return. 

Else continue step 2 and step 3 alternately until all the vertices are included 

in union of set 1 and set 2. 

Step 5 If two computed sets following the above steps are distinct, then it is 

bipartite. 

5.2.5 Complete Bipartite Graph: 

A bipartite graph G is a complete bipartite graph if there is an edge between 

every pair of vertices taken from two disjoint sets of vertices (one vertex from one 

setV1and the other from set V2). 

 Complete bipartite graph G is denoted by Kmn, where m and n are the 

number of vertices in two distinct subsetsV1 and V2. 

Some examples of complete bipartite graphs are shown in Figure. 

 

 

 

 

 

  

(b) K1,2 (c) K2,3 (d) K 2,2 
(a) K 1,1 
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Example 5.12 

How many edges do the complete bipartite graph, Km n have? 

Solution: 

The vertex set of Km n consists of two disjoint sets A and B.  

A contains m vertices and B contains n vertices. 

Each vertex in A is adjacent to each vertex in B. 

No two vertices either in A or in B are adjacent. 

 Hence, the degree of each vertex in A is n, and the degree of each vertex in 

B is m.  

Therefore, the sum of the degrees is 2 * m* n, and so there are m* n edges 

(as per the handshaking theorem). 

 

Note :Complete bipartite graph Km,n has m + n vertices and m * n edges. 

Km, n is regular if m= n. 

 

Example 5.13 

Prove that a graph which contains a triangle cannot be bipartite. 

Solution 

In a bipartite graph, the vertices should be divided into two 

distinct subsets. 

 The number of vertices of the given graph is 3, as it is a triangle. So, it is 

not possible to divide the vertices into two disjoint set of vertices since each edge 

is joined by the rest two edges. 

Hence, this graph may not be a bipartite graph. 
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5.3 SUBGRAPH  

If G and H are two graphs with vertex sets V(G) and V(H) and edge sets 

E(G) and E(H),respectively, such that V(H)⊆ V(G) and E(H)⊆E(G),  then we say 

that H is a subgraph of Gor G is a super-graph of H. 

In other words, if H is a subgraph of G, then all the vertices and the edges 

of H are in G and each edge of H has the same endpoints as in G. 

Now if V(H)= V(G) and E(H) C E(G), then we say that H is a spanning 

subgraph of G.  

A spanning subgraph is a subgraph that contains all the vertices of the original 

graph.  

If H is a subgraph of G, then 

(a) All the vertices of H are in G. 

(b) All the edges of H are in G.  

(c) Each edge of H has the same endpoints in H as in G. 

For example  

A graph G is shown below and its one subgraphis  in Figure (b), but the 

graph shown in Figure (c) is not a subgraph of G, as no edge between v3 and v2 

is present in the original graph G. 

 

 

 

 

 

Note : 

Suppose a graph G has n  number of vertices (i.e., |V| = n) and m number 

of edges (i.e., |E|=n)   

Then,  number of non-empty subsets of V as 2
n
 - 1 and  
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number of subsets of E as 2
m
.  

Thus, the total number of non-empty subgraphs of G is (2
n
 - 1) * 2

m
.  

 

Example 5.14 

Prove that the number of spanning subgraphs of a graph G with m vertices 

is 2
m
 

Proof : 

Number of spanning subgraphs with 0 (zero) edge and m vertices is 
m
Co 

Number of spanning subgraphs with 1 edge and m vertices is 
m

C1. 

Number of spanning subgraphs with 2 edges and m vertices is 
m
C2. 

….. …. 

Number of spanning subgraphs with r edges and m vertices is 
m
Cr. 

……. …….. 

Number of spanning subgraphs with m edges and m vertices is 
m
Cm. 

Total number of spanning subgraphs 

= 
m
Co + 

m
C1 + 

m
C2 + • • • + 

m
Cm 

= 2
m
 (by binomial theorem)  

 

Example 5.15 

 For the graph G draw the subgraphs 

(a) G — e (here, e is one edge) 

(b) G — a (here, a is one vertex) 

 

e 

   G 

Solution : 

The subgraphs are shown below 
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  G –e        G – a 

 

Example 5.16 :Draw some subgraphs of the graph 

    

 

Solution : 

   

 

5.4 OPERATIONS ON GRAPH 

 In this section some operation on graph are discussed. 

i. Union of two graphs G1 and G2 will be another graph G such that 

V(G1∪G2) = V(G1) ∪V(G2) and E(G1∩G2)= E(G1) ∩E(G2) 

If no common vertex is present in between G1 and G2 then the resultant 

graph will be disconnected. 

 

       

    G1                             G2                                  G1 U G2 

 

 

 

ii. Intersection of two graph G1 and G2 will be another graph G such that  
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𝑉 𝐺1 ∩ 𝐺2 =  𝑉 𝐺1 ∩ 𝑉 𝐺2 ≠ Φ𝑎𝑛𝑑𝐸 𝐺1 ∩ 𝐺2 = 𝐸 𝐺1 ∩ 

𝐸(𝐺2) 

      

              G1        G2  G1 ∩G2 

iii. Sum of two graphs 

Let 𝐺1 =  𝑉1, 𝐸1  and 𝐺2 =  𝑉2, 𝐸1  be two graphs such that V1 ∩V2≠ Φ. The 

sum of two graphs G1 and G2 is G1+G2 is defined as the graph G in which vertex 

set is V1+V2 and the edge set consists of the edges in E1 and E2 and the edges 

joining each vertex of V1 with each vertex of V2.  

 

 c 

a d 

b 

 e 

G1  G2     G1 +  G2   

 

iv. Complement: The complement G' of G is defined as a simple graph 

(parallel edge and self-loop are ignored) with the same vertex set as G, 

and where two vertices u and v are adjacent only when they are not 

adjacent in G. 

 

 G     G
‟ 

v. Product of two graphsG1 and G2is defined as G = (V1 U V2, V1x 
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V2)where V1 U V2 is the union of the vertex sets V1 of G1 and V2of G2, 

and V1 x V2 is the cross product to compute the edge set of the 

resultant graph G. 

 

5.5 REPRESNTATION OF GRAPH 

 Diagrammatic (graphical) representation of a graph is very convenient for 

visual study, but it is practically feasible only when the number of vertices and 

edges of the graph is reasonably small.  So, we need some other reasonable 

ways to represent graphs with large number of vertices and edges. These 

representations are also expected to be useful in computer programming. Some 

representations for undirected as well as directed graphs are discussed below. 

5.5.1 Matrix (Adjacency Matrix) Representation 

  The adjacency matrix is commonly used to represent graphs for computer 

processing. In such representation, an n x n Boolean (1,0) matrix is used where a 1 

at position (u, v) indicates that there exists an edge from vertex u to v, and a 0 at 

position(u, v) indicates that there is no edge reachable directly from u to v. 

If the graph is undirected, then its corresponding adjacency matrix will be 

symmetric. 

(i) Matrix presentation of undirected graph 

If an undirected graph G consists of n vertices (assuming that the graph has 

no parallel edge), then the adjacency matrix of G is an n x n matrix A = 𝑎𝑖𝑗   and 

defined as follows: 

𝑎𝑖 ,𝑗 =    
1, 𝑖𝑓 𝑡𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗  

0, 𝑖𝑓 𝑡𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗     
  

Some observations from matrix representation of undirected simple graph: 
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(a) 𝑎𝑖 ,𝑗 =𝑎𝑗 ,𝑖for all i and j, i.e., the matrix is symmetric. 

(b) Diagonal elements of the matrix are zero (0) (as the simple graph 

possesses no self loop). 

(c) The degree of a vertex is the sum of the 1s in that row. 

(d) Let G be a graph with n vertices: V1, V2, V3, . . . ,Vn and A be the 

adjacency matrix of G. Let B be the matrix computed as follows: 

𝐵 = 𝐴 + 𝐴2 + 𝐴3 + ⋯ + 𝐴𝑛(𝑛 > 1) 

Now, B is connected if and only if B has no zero entry. 

(ii)  Matrix representation of directed graph 

Let G a be a directed graph (digraph) consists of n vertices (assuming that the 

graph has no parallel edge. The adjacency matrix of G is an n x matrix A 

= 𝑎𝑖,𝑗  and is defined as follows 

𝑎𝑖 ,𝑗 = {1, if there is a directed edge between vertices vi and vj 

0, otherwise 

Some observations from the matrix representation of directed simple graph. 

a. 𝑎𝑖 ,𝑗 ≠ 𝑎𝑗 ,𝑖for all i and j 

b. Diagonal elements of the matrix A are 0 

c. The sum of 1 in any column j of A is equal to the in-degree of vertex vj. 

d. The sum of 1 in any row i of A is equal to the out-degree of vertex vi 

5.5.2 Incidence Matrix Representation of Graph 

 Let G be a graph with n verities and e edges.  

The incidence matrix is defined as an nxe matrix B=[bi,j] where 

bi,j  =  
1, 𝑖𝑓 𝑗𝑡 𝑒𝑑𝑔𝑒 𝑒𝑗 𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑖𝑡 𝑡𝑒 𝑖𝑡 𝑣𝑒𝑟𝑡𝑥
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                                                                  
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Example 5.17 : 

Write the incidence matrix of the graph G given in figure  

    

    

     Figure 5. 13 

Solution : 

The incidence matrix is  

  Edge  e1 e2 e3 e4 

  Vertex  1 1 1 1 0 

      2 1 0 0 0 

      3 0 1 1 1 

      4 0 0 1 1 

 

  


